001041732 001__ 1041732
001041732 005__ 20250512115729.0
001041732 0247_ $$2doi$$a10.1038/s41567-024-02765-w
001041732 0247_ $$2ISSN$$a1745-2473
001041732 0247_ $$2ISSN$$a1745-2481
001041732 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02411
001041732 0247_ $$2pmid$$a40093970
001041732 0247_ $$2WOS$$aWOS:001412684400001
001041732 037__ $$aFZJ-2025-02411
001041732 082__ $$a530
001041732 1001_ $$0P:(DE-Juel1)196658$$aVodeb, Jaka$$b0$$eCorresponding author$$ufzj
001041732 245__ $$aStirring the false vacuum via interacting quantized bubbles on a 5,564-qubit quantum annealer
001041732 260__ $$aBasingstoke$$bNature Publishing Group$$c2025
001041732 3367_ $$2DRIVER$$aarticle
001041732 3367_ $$2DataCite$$aOutput Types/Journal article
001041732 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1746542451_15591
001041732 3367_ $$2BibTeX$$aARTICLE
001041732 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041732 3367_ $$00$$2EndNote$$aJournal Article
001041732 520__ $$aFalse vacuum decay—the transition from a metastable quantum state to a true vacuum state—plays an important role in quantum field theory and non-equilibrium phenomena such as phase transitions and dynamical metastability. The non-perturbative nature of false vacuum decay and the limited experimental access to this process make it challenging to study, leaving several open questions regarding how true vacuum bubbles form, move and interact. Here we observe quantized bubble formation in real time, a key feature of false vacuum decay dynamics, using a quantum annealer with 5,564 superconducting flux qubits. We develop an effective model that captures both initial bubble creation and subsequent interactions, and remains accurate under dissipation. The annealer reveals coherent scaling laws in the driven many-body dynamics for more than 1,000 intrinsic qubit time units. This work provides a method for investigating false vacuum dynamics of large quantum systems in quantum annealers.
001041732 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001041732 536__ $$0G:(EU-Grant)101018180$$aHPCQS - High Performance Computer and Quantum Simulator hybrid (101018180)$$c101018180$$fH2020-JTI-EuroHPC-2020-2$$x1
001041732 588__ $$aDataset connected to DataCite
001041732 7001_ $$00000-0002-3749-6375$$aDesaules, Jean-Yves$$b1
001041732 7001_ $$00000-0003-2288-7661$$aHallam, Andrew$$b2
001041732 7001_ $$0P:(DE-Juel1)191142$$aRava, Andrea$$b3
001041732 7001_ $$00009-0003-8551-3920$$aHumar, Gregor$$b4
001041732 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b5
001041732 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b6
001041732 7001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b7
001041732 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b8
001041732 7001_ $$00000-0002-8451-2235$$aPapić, Zlatko$$b9
001041732 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-024-02765-w$$gVol. 21, no. 3, p. 386 - 392$$n3$$p386 - 392$$tNature physics$$v21$$x1745-2473$$y2025
001041732 8564_ $$uhttps://juser.fz-juelich.de/record/1041732/files/s41567-024-02765-w.pdf$$yOpenAccess
001041732 909CO $$ooai:juser.fz-juelich.de:1041732$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001041732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196658$$aForschungszentrum Jülich$$b0$$kFZJ
001041732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191142$$aForschungszentrum Jülich$$b3$$kFZJ
001041732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b5$$kFZJ
001041732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b6$$kFZJ
001041732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b7$$kFZJ
001041732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b8$$kFZJ
001041732 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001041732 9141_ $$y2025
001041732 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001041732 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001041732 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT PHYS : 2022$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2022$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2024-12-11$$wger
001041732 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041732 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001041732 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001041732 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001041732 920__ $$lyes
001041732 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001041732 980__ $$ajournal
001041732 980__ $$aVDB
001041732 980__ $$aUNRESTRICTED
001041732 980__ $$aI:(DE-Juel1)JSC-20090406
001041732 9801_ $$aFullTexts