001     1041732
005     20250512115729.0
024 7 _ |a 10.1038/s41567-024-02765-w
|2 doi
024 7 _ |a 1745-2473
|2 ISSN
024 7 _ |a 1745-2481
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02411
|2 datacite_doi
024 7 _ |a 40093970
|2 pmid
024 7 _ |a WOS:001412684400001
|2 WOS
037 _ _ |a FZJ-2025-02411
082 _ _ |a 530
100 1 _ |a Vodeb, Jaka
|0 P:(DE-Juel1)196658
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Stirring the false vacuum via interacting quantized bubbles on a 5,564-qubit quantum annealer
260 _ _ |a Basingstoke
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746542451_15591
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a False vacuum decay—the transition from a metastable quantum state to a true vacuum state—plays an important role in quantum field theory and non-equilibrium phenomena such as phase transitions and dynamical metastability. The non-perturbative nature of false vacuum decay and the limited experimental access to this process make it challenging to study, leaving several open questions regarding how true vacuum bubbles form, move and interact. Here we observe quantized bubble formation in real time, a key feature of false vacuum decay dynamics, using a quantum annealer with 5,564 superconducting flux qubits. We develop an effective model that captures both initial bubble creation and subsequent interactions, and remains accurate under dissipation. The annealer reveals coherent scaling laws in the driven many-body dynamics for more than 1,000 intrinsic qubit time units. This work provides a method for investigating false vacuum dynamics of large quantum systems in quantum annealers.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a HPCQS - High Performance Computer and Quantum Simulator hybrid (101018180)
|0 G:(EU-Grant)101018180
|c 101018180
|f H2020-JTI-EuroHPC-2020-2
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Desaules, Jean-Yves
|0 0000-0002-3749-6375
|b 1
700 1 _ |a Hallam, Andrew
|0 0000-0003-2288-7661
|b 2
700 1 _ |a Rava, Andrea
|0 P:(DE-Juel1)191142
|b 3
700 1 _ |a Humar, Gregor
|0 0009-0003-8551-3920
|b 4
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 5
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 6
700 1 _ |a Willsch, Madita
|0 P:(DE-Juel1)167543
|b 7
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 8
700 1 _ |a Papić, Zlatko
|0 0000-0002-8451-2235
|b 9
773 _ _ |a 10.1038/s41567-024-02765-w
|g Vol. 21, no. 3, p. 386 - 392
|0 PERI:(DE-600)2206346-8
|n 3
|p 386 - 392
|t Nature physics
|v 21
|y 2025
|x 1745-2473
856 4 _ |u https://juser.fz-juelich.de/record/1041732/files/s41567-024-02765-w.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041732
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)191142
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT PHYS : 2022
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHYS : 2022
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21