001     1041738
005     20250610131453.0
024 7 _ |a 10.1103/PhysRevMaterials.9.044412
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02414
|2 datacite_doi
024 7 _ |a WOS:001495003900001
|2 WOS
037 _ _ |a FZJ-2025-02414
082 _ _ |a 530
100 1 _ |a Hilgers, Robin
|0 P:(DE-Juel1)179506
|b 0
|e Corresponding author
245 _ _ |a Machine Learning-based estimation and explainable artificial intelligence-supported interpretation of the critical temperature from magnetic ab initio Heusler alloys data
260 _ _ |a College Park, MD
|c 2025
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1746449704_28268
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Machine learning (ML) has impacted numerous areas of materials science, most prominently improving molecular simulations, where force fields were trained on previously relaxed structures. One natural next step is to predict material properties beyond structure. In this work, we investigate the applicability and explainability of ML methods in the use case of estimating the critical temperature (𝑇c) for magnetic Heusler alloys calculated using ab initio methods determined materials-specific magnetic interactions and a subsequent Monte Carlo (MC) approach. We compare the performance of regression and classification models to predict the range of the 𝑇c of given compounds without performing the MC calculations. Since the MC calculation requires computational resources in the same order of magnitude as the density functional theory (DFT) calculation, it would be advantageous to replace either step with a less computationally intensive method such as ML. We discuss the necessity to generate the magnetic ab initio results to make a quantitative prediction of the 𝑇c. We used state-of-the-art explainable artificial intelligence (XAI) methods to extract physical relations and deepen our understanding of patterns learned by our models from the examined data.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 1
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 2
773 _ _ |a 10.1103/PhysRevMaterials.9.044412
|g Vol. 9, no. 4, p. 044412
|0 PERI:(DE-600)2898355-5
|n 4
|p 044412
|t Physical review materials
|v 9
|y 2025
|x 2475-9953
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1041738/files/PhysRevMaterials.9.044412.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1041738/files/Pre-Postprint_2311.15423v1.pdf
909 C O |o oai:juser.fz-juelich.de:1041738
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131042
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2022
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21