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Machine Learning-based estimation and explainable artificial intelligence-supported interpretation
of the critical temperature from magnetic ab initio Heusler alloys data
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Machine learning (ML) has impacted numerous areas of materials science, most prominently improving
molecular simulations, where force fields were trained on previously relaxed structures. One natural next step is
to predict material properties beyond structure. In this work, we investigate the applicability and explainability
of ML methods in the use case of estimating the critical temperature (Tc) for magnetic Heusler alloys calculated
using ab initio methods determined materials-specific magnetic interactions and a subsequent Monte Carlo (MC)
approach. We compare the performance of regression and classification models to predict the range of the Tc of
given compounds without performing the MC calculations. Since the MC calculation requires computational
resources in the same order of magnitude as the density functional theory (DFT) calculation, it would be
advantageous to replace either step with a less computationally intensive method such as ML. We discuss
the necessity to generate the magnetic ab initio results to make a quantitative prediction of the Tc. We used
state-of-the-art explainable artificial intelligence (XAI) methods to extract physical relations and deepen our
understanding of patterns learned by our models from the examined data.
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I. INTRODUCTION

Machine learning (ML) modeling has been shown to yield
promising results in various scientific sectors and applica-
tions [1–3]. The ability of flexible learning algorithms to
recognize patterns, adapt to data properties, and tackle chal-
lenges such as regression, classification, and clustering has
established an additional scientific paradigm of data-driven
science besides the traditional paradigms of experiments, the-
ories, and simulations. Data-driven science essentially shifts
scientific problem-solution strategies for predictions from
problem-specific models to versatile data-based models [4–6].
This is also the case for a plurality of materials science
applications including superconductivity [7], molecular dy-
namics [8], materials synthesis and design [9], knowledge
discovery through data mining [10], entropy changes [11],
and other topics for both properties and materials predic-
tion [5,12,13]. For some of the mentioned applications, e.g.,
in some molecular dynamics simulation applications [8],
lightweight and computationally inexpensive ML-based ap-
proaches were able to virtually replace established techniques,
while in other applications ML-based approaches complement
existing methodologies [5]. Data mining-related techniques
have shown to be powerful tools in the hands of scientists to
discover relations within data, even in the materials science
community [10].
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There are a multitude of magnetic properties to investigate,
many of which are traditionally described by complex models
based in part on the quantum mechanics of the many-electron
problem. Within the set of magnetic properties, the critical
temperature, also known as the Curie temperature in the con-
text of ferromagnetic materials, represents a key characteristic
in both fundamental physics and practical applications. It pro-
vides valuable insights into the transitions between different
magnetic phases and guides the design and optimization of
magnetic materials for technological use. For example, in
the design of magnetic materials for the energy use sector
of the economy [14], e.g., electric power generation, condi-
tioning, conversion, transportation, or the information sector
of the economy, e.g., spintronics [15] or magnetic storage
devices (like hard drives), the critical temperature determines
the maximum operating temperature where magnetic data
storage remains stable. Typical application demands necessi-
tate critical temperature values significantly exceeding room
temperature [16]. Hence, in order to conduct application-
oriented material screening studies at a high-throughput scale
for materials discovery, a lightweight method is required
to predict whether the critical temperature of a compound
meets the requirements set by the applications. The ML-based
prediction of magnetic materials and their corresponding
properties is mostly covered by applications dedicated to
certain material families, e.g., double perovskites [17], metal-
lic glasses [18], multilayer film systems [19,20], and of
course Heusler alloys [21]. Approaches in the field of high-
throughput computational materials science currently aim to
optimize computational starting parameters using computed
data, essentially performing data-driven process optimiza-
tion in materials research. [19] Existing works focusing on
predicting magnetic properties of Heusler alloys, mostly try
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FIG. 1. Schematic depiction of the layered Tc determination with
different ML integration levels.

to model the Curie temperature in ferromagnetic materials
[22,23], while the more general concept describing a wide
range of magnetic phases, including ferromagnetic, antifer-
romagnetic, ferrimagnetic, and spin spiral-type ordering is
the critical temperature of the phase change transition of the
ordered magnetic to a non-magnetic state represents the field
of interest in this study. Other studies predicting magnetic
properties in Heusler alloys predict, e.g., magnetic moments
[21] and the magnetocaloric effect [24,25].

Within the phase space of magnetic materials, the Heusler
(and Heusler-like alloys) alloys are known to represent can-
didate materials for various technical applications, as the
material class of Heusler [26,27] alloys (e.g., the ordered
L21 phase) and related disordered phases (such as A2 and
B2 phases) are known to exhibit many interesting properties
including superconductivity [28], piezoelectricity [29], rare-
earth free permanent magnets [30], and half-metallicity [31].
The combination of multiple properties in a single compound
such as both half-metallicity and magnetic stability allow for
the occurrence of spin-polarized charge currents, which are
a topic that is actively investigated by the scientific com-
munity for applications in spintronics [32,33]. By including
not only the ordered but also disordered phases and quater-
nary Heusler alloys, the phase space of possible compounds
increases drastically in comparison to existing works like
[34], which restricts the phase space to pure transition-metal
Heusler alloys. However, as a Heusler alloy’s structure is
defined by the individual compound’s lattice site constituents,
the lattice constant, and the symmetry group alone, the struc-
tural parameters that have to be considered by a model in order
to describe such a system are very limited.

In this paper, we aim to demonstrate the advantages offered
by ML, replacing traditional Tc determination using density
functional theory (DFT) and Monte Carlo (MC) simulations.
We focus on the prediction of the magnetic critical tempera-
ture for ordered (including the phases L21, C1b, Y, and XA) as
well as disordered (including the phases A2 and B2) magnetic
Heusler alloys. The critical temperatures were determined in a
two-step process of an ab initio KKR-GF [35] DFT simulation
followed by an MC simulation of the Tc as depicted in the top
path of Fig. 1. As both steps are comparable in computational
cost, we apply our modeling for the whole process as well
as only the MC step, taking advantage of magnetic results
obtained in the ab initio step.

Beyond that, we discuss the impact of magnetic features
for the prediction of high Tc materials and the usability in
high-throughput materials screening applications, which do
not include DFT-originated features in the first place. This dis-
cussion is heavily assisted by the use of explainable artificial

intelligence (XAI) techniques, which we demonstrate to be
able to explain model predictions based on materials science
data and visualize relations in the training data captured by the
ML model [36].

II. METHODS AND MATERIALS

A. Data processing & cleaning

The examined data was collected at our institute and
published as the Jülich-Heusler-magnetic-database (JuHemd)
[37]. It provides not only structural and stoichiometric in-
formation on the Heusler compounds but also magnetic data
obtained by DFT and Monte Carlo simulations. The tar-
get quantity we want to predict in our modeling is the
critical temperature Tc of the magnetic ordering. While
the JuHemd contains experimental values as well as those
based on DFT simulations using GGA [38] and LDA [39]
exchange-correlation functionals, we restrict our analysis to
the GGA-based values as these are provided for most com-
pounds and provide the most homogeneous data quality.

As a first preparation step, we extract the Tc values together
with a set of descriptors for each compound in the database.
All information was encoded into a numerical representation
and made available for the modeling process. Using the pro-
vided metadata to augment the information with additional
atomic features, we finally obtain a set of 118 descriptors, as
listed in Table I. [40] Before any ML modeling is performed,
these descriptors {xi} are then transformed to a standardized
form

{zi} = {xi} − μi

σi
, (1)

using the mean μi and standard deviation σi of the i-th de-
scriptor in the training set.

Only those compound entries have been included which
contain all of the above-mentioned entry labels. Incomplete
data points have not been used. Additionally, only magnetic
alloys are selected. We chose the magnetic cutoff to be

∑

i

|mi| > 0.1μB, (2)

where the mi denotes the magnetic moment of the atom on site
i in the compound’s molecular formula. Similarly, we did not
include compounds with a simulated Tc = 0 K. This leaves us
with a final dataset size of 408 Heusler compounds.

Since, during the data processing, incomplete data points
for Heusler compounds are removed, there are some elements
from the periodic table that are contained in the original
JuHemd but are not contained anymore in the processed data.
The corresponding densities of these atomic numbers, which
originate from these removed elements, represent descriptors
with zero variance in every compound. Such descriptors are
removed before further processing, as they are meaningless
for the ML training and evaluation process. In this paper, of
the 118 descriptors, there are 11 descriptors in the dataset
with zero variance, which are hence removed. The whole data
order has been randomized in order to avoid the clustering of
similar data points due to the alphabetical order. This enforces
the homogeneity of the dataset, which is necessary for the
cross-validation (CV) [41] model evaluation to be meaningful.
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TABLE I. List of all features which are contained in the processed data and their corresponding explanation. For all features that were
directly derived from the JuHemd, the JuHemd label has been used. Also, JuHemd labels have been included which were used to construct
processed quantities even though the original label is not included in the processed dataset due to the format, the quantity is given in the
JuHemd.

Label Description

Non-DFT originated features

lattice_constanta Lattice constant of the Heusler
formulab Chemical formula of the compound
Ferro Densityb Fraction of ferromagnetic elements (Fe, Ni, Co) in the compound
Rare earth Materials Densityb Fraction of rare earth components in the compound
Symmetry Codeb An integer encoding the Heuslers symmetry group
Stoichiometryb 5-Digit integer encoding the stochiometry of the compound
Density by Atomic Numberb,d Fractional density of each atomic number is encoded by an individual descriptor
Atomic Numberc Atomic number of the constituents Zi

Number of Neutronsc Number of neutrons of the constituents
Nominal Massc Nominal mass of the constituents atoms
Number of Electronsc Number of electrons of the constituents
Exact Massc Exact mass of the constituents atoms
Atomic Radiusc Atomic radii of the constituents atoms
Number of Valence Electronsc Number of valence electrons of the constituents atoms eval

Covalence Radiusc Covalence radius of the constituents atoms
Periodc Period number in the PSE of the constituents atoms
Electronegativityc Electronegativity of the constituents atoms χi

Van der Waals Radiusc Van der Waals radius of the constituents atoms rvdw
i

Electron Affinityc Electron affinity of the constituents atoms Eea i

DFT originated features

Individual Magnetic Momentsb Individual magnetic moments mi of all constituent atoms
Absolute Magnetic Momentsb Individual absolute magnetic moments |mi| of all constituent atoms
Total magnetic momentb M = ∑

i mi

Sum of absolute magnetic momentsb MAbs = ∑
i |mi|

etotal (Ry)a Total energy of the compound ETot

Magnetic Statec Integer encoding the magnetic state (ferro, AFM, and spin spiral)

aAvailable directly from JuHemd.
bConstructed descriptors.
cAdded atomic descriptors—most have four entries per compound.
dThis feature has as many entries (columns) as the JuHemd contains a plurality of unique elements from the PSE.

The code of the data processing script, as well as the code
used to generate the following results and figures, is available
[42]. This allows us to reevaluate the models if more data
is added to the JuHemd. Figure 2 shows the distribution of
atomic numbers across different lattice sites in the Heusler

FIG. 2. Distribution of atomic numbers in the GGA dataset after
processing and cleaning.

compounds. One can see that manganese, chromium, and iron
are contained in a large portion of compounds in the dataset.

B. Model goals & evaluation

The prediction of Tc using the descriptors outlined in the
previous section leads to a classical regression task. Such re-
gression models aim at predicting Tc as accurately as possible.
Different metrics are available to evaluate their performance.
The evaluation method of choice is also determined by e.g.,
the error which is desired to be minimized and the importance
and impact of outliers in the prediction. The metric used
for regression models during this work is the coefficient of
determination (Denoted as R2) for test sets, as well as the CV
scores. R2 measures how well the describing features explain
the change in the target variable. Hence, we can be sure to
choose a model which properly links the descriptors to Tc.

Besides the regression, we also transformed our problem
into a classification task. For the critical temperature, this
can be done if one is interested in Tc to be in a certain
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FIG. 3. Distribution of Tc values in the total dataset as well as in
the test set only.

range. Industrial applications [43] as magnetic storage de-
vices, for example, typically require magnetic materials to
have a Tc above 60 ◦C in operating conditions. To maintain this
comfortably and ensure long-time magnetic stability at those
temperatures, we decided on a threshold of 140 K above 60 ◦C
as Tc for a Heusler compound to be considered as “High” Tc

[16]. This gives a classification threshold of 200 ◦C in total.
For other thresholds (30 ◦C, 60 ◦C, and 90 ◦C) performance
metrics have been computed and the results are referenced in
the results section to get a broader view on different threshold
choices. It is anticipated that the performance varies to some
degree depending on the chosen binary classification thresh-
old and the distribution of compounds within the classification
ranges.

Classification typically represents an easier modeling task,
as the predictive process is less demanding compared to a
regression problem. Hence, if one is only interested in mag-
netic Heusler alloys, which are candidates for an industrial
application, but the exact value of Tc is not of interest in the
first place—as the exact value could still be determined in a
later step using the established ab initio + MC method for the
compounds classified as potentially relevant—one can stick
to classifying model algorithms. This type of classification
model can be used to filter a large number of potential com-
pounds to determine which should be examined further, e.g.,
by a DFT calculation in a high-throughput materials screening
context.

For the classification task, additional considerations on
how to evaluate the model performance have to be made. The
number of correctly predicted categories would be called the
accuracy. However, the errors made in the classification do
not have the same significance. If a compound is classified as
a “low Tc” but actually has a “high Tc;” this means the model
misses out on a material with a potential industrial application.
The other error the model can make is classifying a “low
Tc” compound as a “high Tc” compound [44], which in the
worst case means a waste of computational resources in the
example above. Therefore, the goal for a classification model
in this application has to be to minimize data points falsely
classified as “low Tc” while still keeping the number of falsely
as “High Tc” classified compounds low in order not to waste
too many computational resources on these false positives.
Hence, we decided to continue with the balanced F1 score,
which represents a trade-off between precision and recall.

The model performance is determined using 20 % of our
data as a test dataset. This test set has been picked randomized
out of the whole dataset and is used for calculating the test
scores only. This gives an insight into how the model would
perform on similar but unseen data. Fourfold CV scores were
used in the course of this research in order to perform hyper-
parameter optimization using a grid search algorithm [45,46].
Hence, for this hyperparameter optimization, we again par-
tition the training data into a 20% validation set for each
individual CV fold and use only the remaining 60% for train-
ing. After the hyperparameter optimization, the validation
set is included to train the model using the best-performing
hyperparameters before proceeding with the testing.

The distribution of the Tc values in the test set is displayed
in Fig. 3. The values above 1500 K can be considered outliers
and are hence removed from the dataset before the data is used
in an ML workflow.For all shown scores, the closer the score
is to 1.0, the better the model’s predictive performance is.

C. ML techniques

The zoo of ML models and techniques continues to grow
year by year. It has already grown to such an extent that it is
impossible to cover all possibilities and learning algorithms in
a single paper. Hence, we limited our analysis to frequently
used and established models. It is also worth mentioning
that we excluded neural network models (NNMs) from our
research on this dataset due to the tabular nature of the data
[47,48].

Before training and evaluating models, it is usually not pos-
sible to anticipate which model will perform best on a given
dataset. This is commonly referred to as the “no free lunch
theorem” [49]. Hence, the regression models we evaluated are
depicted in the following table:

Linear Nonlinear Ensemble

LASSO K-Nearest Neighbors Extra Trees
LASSOLars Decision Tree Random Forest
Linear Regression

We have also examined classification models based on
similar learning algorithms as some of the regression models
depicted in the previous table, as well as a layered indirect
classification based on the prediction of the regression models.
The indirect classification has been performed to be able to
compare the performance of the regression models to their
classification counterparts. Since classification is an inher-
ently less complex task than regression, the models would
be hard to compare otherwise. The reason underlying this
comparison is to determine the best-performing overall model
to be used for the feature importance analysis.

Generally, we want our models to properly generalize to
unseen data. As CV is used to choose a model’s hyperpa-
rameters, one could argue that we essentially influence the
CV scores by choosing a set of hyperparameters to maximize
the score. Therefore, the most relevant metric to choose a
model in this case is the model performances on unseen test
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data, which is what we used to select models for the feature
importance analysis. During this study, we depicted the co-
efficient of determination and F1 scores as relative indicators
of model performance. However, in preliminary tests of this
study, we observed that the mean absolute error as absolute
measure in the regression case of the model performance on
unseen data yields a similar model ranking. The automatic
computation of the mean absolute error for regression models
is also included in our code publication. [42] The data we
produced by processing the original database is also publicly
available. [50]

In a setting where these models would be used for mate-
rials screening on unseen and heterogeneous data, we would
recommend other additional tests and evaluations beyond test
set metrics. This could also include evaluation of the trained
model’s response to unreasonable inputs (such as edge cases)
as well as inputs close to known data but with very minor
deviations in key features.

D. Feature importance

ML algorithms can be used as black boxes, simply yielding
a desired prediction. However, by not applying XAI tech-
niques to understand the model’s prediction, we could miss
out on the opportunity to improve our understanding of the
underlying physics and validate that the model, indeed, has
learned physical key properties and relations. It is considered
a best practice to perform feature importance analysis using
the model which performs best. This is possible by using the
SHAP package [51] including the inbuilt visualization options
for the SHAP values. SHAP values represent an ML-specific
case of the coalition game theory originated Shapley values
[52]. SHAP values can be considered as the estimated av-
erage contribution of an individual feature—given a set of
features—to the deviation of a predicted value from the mean
prediction. Hence, Shapley values can be interpreted as a
“driving force” of individual features away from the mean
prediction. This allows us to explain the model’s prediction
locally for each individual prediction and globally for a set of
predictions [51]. The SHAP package is, in principle, model
agnostic but has routines optimized for certain model types
such as the tree-based model [53].

III. RESULTS & DISCUSSION

In the following, we showcase the scores and results we
achieved in training different ML models. In the spirit outlined
in the introduction, we investigated the case in which we used
descriptors, including results from the DFT simulations, to
only learn the results of the Monte Carlo step first. In a second,
independent analysis, we neglected all descriptors that are
only available after the DFT simulation and tried to predict
Tc values by using only the atomic data.

For the classification, we will discuss the best-performing
model and the differences between direct and indirect classi-
fication for both the complete descriptor set and the reduced
descriptor set.

TABLE II. Regression scores of trained models using the full
dataset including ab initio-originated descriptors. The rows show the
linear models, the next rows show the nonlinear models, and the final
rows show the ensemble models.

CV Score Train R2 Test R2

LASSOLars << 0 0.77 0.65
LASSO 0.66 0.78 0.66
Linear Reg. << 0 0.77 << 0
Decision Tree Regression 0.59 1.0 0.62
KNN 0.49 0.66 0.57
Extra Trees 0.77 1.0 0.85
Random Forest 0.74 0.97 0.82

A. Complete descriptor set

1. Regression

A first impression of the predictive performance of two
different regression models can be obtained from Fig. 4. For
a simple linear model (LASSO) as well as a more complex
extremely randomized trees (extra trees) regression model, we
report the predicted value of Tc in relation to the value ob-
tained from the full simulation for our test set. While the Lasso
results show a systematic error by underestimating the higher
values of Tc while overestimating the critical temperature for
the low Tc Heuslers, this deficiency is substantially reduced in
the extra trees model. In addition, this model also reproduces
the distribution of the values much more accurately and shows
less spread around the ideal red line.

This can be confirmed by the plot (Fig. 5) of the difference
between the simulated (true) value and the prediction, show-
ing a low relative residual error for the whole temperature
range except the very low Tc values. This error for low val-
ues arises from the scale of the very low-temperature values,
which enlarges the relative error due to its fractional nature.

A more comprehensive overview of the results of various
regression models can be obtained from Table II, in which we
report some performance indicators for the linear, nonlinear,
and ensemble models.

It is clearly visible that the ensemble models are perform-
ing best on the test set and in the CV scoring. However,
these good predictions are accompanied by a high degree
of overfitting to the training data, easily recognizable by the
nearly perfect R2 score on the training set, i.e., a very low
or even close to vanishing bias [46]. The fact that only the
ensemble models exhibit a reasonably low bias indicates that
the complexity of other models does not meet the complexity
of the quantity to predict and/or the data. In general, the model
complexity has to be adjusted to the data complexity [54]. It is
clear that a simple linear regression, as well as the K-nearest
neighbor model, does not meet this requirement in our case.
This finding reflects the complexity of the physical processes
responsible for the emergence and stability of magnetic phe-
nomena [55].

The typical approach to cope with overfitting is increasing
the regularization [56]. However, even by applying regular-
ization, we could not determine models with improved CV
scores, which itself indicated that a lack of regularization is
not the root cause for the overfitting. Moreover, when dealing
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FIG. 4. Prediction result of two models for the test set. On the left, the data for the linear LASSO model is shown, while the right panel
shows the data from the extremely randomized trees (extra trees) regression model [57]. The red line indicates a perfect match between the
predicted and expected data and the blue line (with shade) is a linear regression through the predicted data points (with a 95% CI envelope for
the regression, computed using a bootstrap [58] based method). On the side distribution plots of the test sets, true Tc values and the predictions
are added.

with different iterations of the dataset over the course of this
study we observed an improvement of the model performance,
e.g., seen in a decreasing variance, with every increase of the
total amount of included Heusler compounds. This indicated
that a lack of training data causes a high variance for the

FIG. 5. Residual depiction of the extra trees regression shown on
the right of Fig. 4 including a LOWESS smoothing applied to the
data points with a pointwise 95% CI envelope.

more complex models. This also explains the higher test score
compared to the CV score. The model in the test case had
the full training data available, while for the calculations of
the CV score each of the four CV scores—which are depicted
here—had only 75% of the training set available for training.

2. Classification

Since classification is a significantly easier task than re-
gression, we expect to see an improved model performance
for each classification model compared to the regression case
on this dataset. In Table III, the results of each linear, non-
linear, and ensemble classification model, as well as indirect
classification models based on a linear model and an ensemble
regression model from Sec. III A 1, are displayed.

As expected, the CV scores of the classification models are
significantly higher than the scores of the regression models,

TABLE III. Direct and indirect classification scores of a model
selection using the full dataset, including ab initio-originated de-
scriptors. The rows show the linear models, the next rows the single
tree-based model, and the final rows the ensemble-based model se-
tups. Results from other threshold choices are available in Table VI.

CV Score Train F1 Test F1 Test Accuracy

Logistic Reg. 0.82 0.91 0.86 0.89
Indirect LASSO 0.86 0.81 0.85
Decision Tree 0.74 1.0 0.75 0.77
Extra Trees 0.82 1.0 0.91 0.93
Indirect Extra Trees
model

1.0 0.89 0.92
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FIG. 6. SHAP beeswarm summary plot of the nine descriptors
with the largest SHAP values [51,52].

which corresponds to a lower bias. Similarly, the results for
the test set are closer to the ideal prediction, as there is less
variance occurring than for the regression models. This aligns
with our interpretation of the overfitting in the regression case
due to the fact that classification is an easier task, so there is
less training data required to fit classification models to the
data as the complexity of the quantity to predict is reduced
from a continuous quantity to a binary value. This reduction
is only possible as we know which minimum Tc values are
required to be relevant to an industrial application.

3. Feature importance

After searching for a working set of hyperparameters in
Sec. III A 1 using the training set, we used the determined
hyperparameters and chose the extra trees regression [57] as
our best-performing model to conduct a feature importance
analysis using the SHAP package [51] and the corresponding
SHAP values. The SHAP values have been calculated for the
training dataset. These values for the most relevant features
are shown in Fig. 6.

Besides the SHAP values, the color of the data points
encodes the relative scale of the feature for each individual
data point. This means that if there is a clear horizontal color
fade visible, this implies a systematic impact of this feature
for the predicted quantity.

From Fig. 6 one can see that for the extra trees model, the
absolute magnetic moment of the compound has the largest
impact on the Tc prediction. All nine most relevant quan-
tities are either magnetic moments or indirectly related to
magnetism (e.g., the Cobalt density of the compound), which
confirms that the magnetic material-specific properties indeed
have the largest impact on the value of the critical temperature.
While all the nine quantities are positively correlated to Tc,
i.e., have an increasing impact on the Tc when they increase
too. For some of the quantities, this is of course an artifact of
our descriptor construction. For example, we encode the mag-
netic state as an integer, with the smallest possible encoding
000 denoting that the material forms neither a ferromagnet,
an antiferromagnet, nor a spin spiral. In contrast, the fact that
the model assigns the most significance to the nine quanti-
ties listed here was obtained without providing any physical

FIG. 7. Relation between absolute magnetic moment of the
Heusler compounds to their Tc values for the whole dataset.

knowledge of the system, besides the fact that we included
these descriptors in the first place. Thus, the modeling sin-
gled out that these parameters indicate the kind of “physical
insight” that can be obtained from ML. For example, the high
relevance of the absolute magnetic moment of the compound
for the Tc is of course in line with the relation one would obtain
from even very basic physics models of magnetism.Looking at
Fig. 7, one can draw even more conclusions. It can be seen that
Tc is not simply proportional to MAbs. Instead, Heusler alloys
with a higher MAbs can show a higher Tc. However, while
a high absolute magnetic moment does not guarantee the
emergence of a high Tc, a low MAbs prevents the occurrence
of high Tc values. Therefore, it is safe to say MAbs is acting as
an upper boundary to Tc together with some constant factor C:

Tc � CMAbs, (3)

Plausible values of C, replicating the observed upper bound-
ary behavior, in this study range from 150 K

μB
to 170 K

μB
. MAbs

is defined as the sum of the individual absolute constituents’
magnetic moments |mi|.

A preliminary investigation of the feature importance using
only features remaining after a LASSO shrinkage analysis
showed notable robustness of the used models toward the
large number of features used within this study’s application
given this feature selection method. Even though this feature
reduction slightly decreased the performance of the tree-based
models the corresponding scores remained in a similar range.
This preliminary investigation was deepened upon reviewers’
request using the 10 most impactful features selected by the
presented SHAP-based feature importance approach. Only
using these 10 descriptors together with a retrained extra trees
regression model, including the DFT-originated descriptors
resulted, in a slight change in the coefficient of determination
(0.84) and a slightly lowered CV score (0.73). The train scores
in this retraining process remained unchanged.
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TABLE IV. Regression scores of promising models using the
reduced dataset, excluding ab initio-originated descriptors.

CV Score Train R2 Test R2

Extra Trees 0.52 1.0 0.76
LASSO 0.31 0.58 0.63

4. Computational efficiency

It is worth mentioning that the computational cost of per-
forming the ab initio calculations followed by the MC in order
to obtain the simulated critical temperature can easily reach
an order of 103 core hours on a high-performance computing
cluster per compound. Compared to this, the resource con-
sumption of any ML model presented within this study for
training, tuning, and evaluation is significantly smaller. The
models can be trained and tuned, with regard to the models’
hyperparameters, within an hour on a regular laptop. The
evaluation of the model requires a set of features, to predict
or classify the critical temperature of a compound. This eval-
uation step consumes comparably neglectable computational
resources and takes only a few seconds.

B. Dataset without DFT-originated descriptors

1. Regression

Retraining the extra trees regression model as well as
the LASSO model to the reduced descriptor set and again
performing hyperparameter optimization using a grid search
algorithm, we achieved the regression scores displayed in
Table IV.

As expected, one can observe a clear decrease in perfor-
mance compared to the case where DFT-originated descrip-
tors have been used. In particular, the LASSO results now
have huge deviations such that one could question its fitness
for any practical application. Therefore, we can already con-
clude, that a prediction of the critical temperature without
the use of the basic magnetic properties predicted by a DFT
simulation is not really possible in our scenario. Therefore, we
decided not to analyze this further, but to concentrate on the
easier classification task.

2. Classification

The achieved classification model results using no DFT-
originated descriptors at all are displayed in Table V. This
table contains exactly the same models as seen before in
Table III.

From the test set of 82 compounds, our constructed in-
direct extra trees classification model managed to correctly
classify 47 “Low” Tc and 29 “High” Tc compounds. Of each
class, three compounds have been wrongly predicted. We
consider falsely classifying a “Low” Tc compound as a “High”
Tc not so relevant for practical application. The worst out-
come in a potential use case is that the model suggests a
“High” Tc compound, and when computing it using a more
sophisticated—and hence computationally more intensive—
approach, one finds that the “High” Tc label has been falsely
assigned. However, if a “High” Tc compound is classified as
“Low” Tc in a high-throughput screening process, it will prob-

TABLE V. Direct and indirect classification scores of a model
selection using the reduced dataset, excluding ab initio-originated
descriptors. The rows show the linear models, the next rows are the
single tree-based model, and the final rows are the ensemble-based
model setups. Results from other threshold choices are available in
Table VII.

CV Score Train F1 Test F1 Test Accuracy

Logistic Reg. 0.68 0.75 0.75 0.79
Indirect LASSO n/a. 0.75 0.8 0.88
Decision Tree 0.66 1.0 0.8 0.84
Extra Trees 0.74 1.0 0.84 0.87
Indirect Extra Trees
model

n/a. 1.0 0.91 0.93

TABLE VI. Scores resulting from evaluating a different thresh-
old in the binary classification process using also DFT-originated
feature input.

Threshold 30 ◦C
Model Test F1 Test Accuracy

Extra Trees 0.88 0.85
Decision Tree 0.88 0.85
Log. Reg. 0.83 0.79
KNN 0.79 0.77

Threshold 60 ◦C
Extra Trees 0.85 0.83
Decision Tree 0.84 0.82
Log. Reg. 0.87 0.84
KNN 0.78 0.77

Threshold 90 ◦C
Extra Trees 0.83 0.82
Decision Tree 0.77 0.76
Log. Reg. 0.83 0.82
KNN 0.78 0.78

TABLE VII. Scores resulting from evaluating a different thresh-
old in the binary classification process not using DFT-originated
feature input.

Threshold 30 ◦C
Model Test F1 Test Accuracy

Extra Trees 0.78 0.73
Decision Tree 0.74 0.68
Log. Reg. 0.77 0.7
KNN 0.71 0.7

Threshold 60 ◦C
Extra Trees 0.75 0.72
Decision Tree 0.73 0.68
Log. Reg. 0.74 0.66
KNN 0.72 0.73

Threshold 90 ◦C
Extra Trees 0.73 0.71
Decision Tree 0.7 0.68
Log. Reg. 0.73 0.68
KNN 0.72 0.74
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FIG. 8. SHAP beeswarm summary plot of the nine descriptors of
the dataset without the DFT-originated data with the largest SHAP
values.

ably never be computed with a more sophisticated approach,
which causes this compound to be potentially “lost” for future
research. In the case of this model, we saw that this crucial
error for falsely classifying a “High” Tc Heusler as a “Low” Tc

Heusler is below 5% and hence meets typical confidence cri-
teria. This concludes that the indirect extra trees classification
is capable of classifying the Tc in “High” and “Low” values
even without the DFT-originated data. While “Low” means Tc

is too low to be relevant for industry applications.

3. Feature importance

Computing the SHAP values for the reduced descriptor
set and visualizing them as we did previously results in the
beeswarm plot shown in Fig. 8. As we can see in Fig. 8,
removing the DFT-originated descriptors and, therefore, the
calculated magnetic moments caused other quantities to be-
come more impactful. As one can expect, these are very
closely related to the magnetic moments (e.g., the density of
ferromagnetic materials in the compound as well as the cobalt
and nickel densities). However, now we observe more com-
plex relations than in the previous feature importance plot,
demonstrating the lower significance of these quantities for
the critical temperatures. We can see a negative correlation be-
tween the van der Waals radius of the atom on site one (rvdw

1 ),
the nickel density in the compound, and the electron affinity
of the atom on site one (Eea1) with a decreasing Tc as these
quantities increase. For the fraction of ferromagnetic atoms,
the effect is much less obvious. We can see that very high
densities of ferromagnetic atoms in the compound contribute
to a largely increased Tc prediction. However, on the other
hand, a low density of ferromagnetic atoms does not lead to an
equally decreased prediction of Tc. Interestingly, this reflects
our previous result that a large absolute magnetic moment cor-
responds to an upper boundary for the Tc. Since a large amount
of ferromagnetic compound constituents is highly correlated
with a large magnetic moment. The required and obtained
model complexity is also observed in the SHAP values of
the symmetry code. Since this is an arbitrary-ordered label for
the symmetry group of the compound, there is no clear order
of the feature value that correlates with the Tc. However, the

model seems to have learned that some feature values have a
larger impact on Tc than others, which is indeed possible.

As the density of the ferromagnetic atoms, the cobalt and
nickel atoms turn out to be relevant quantities in Fig. 8; we
investigated their correlation with Tc in more detail as depicted
in Fig. 9. The depicted fractional density histograms confirm
the trends we were hinted at by the SHAP beeswarm plot. It
is easily visible that a large density of ferromagnetic atoms in
the compound is indeed contributing to a larger Tc value, with
one exception: The antiferromagnetic case. We can see that
there are a few materials that have no ferromagnetic atoms
in the compound at all but still a very high Tc. These are
strong antiferromagnets. This finding can be related to our
previous result for the modeling, including the DFT-based
magnetization values, in which we have seen that the SHAP
values of MAbs hint at a larger impact than those of M. As
the antiferromagnetic compounds have a vanishing M but a
large MAbs while resulting in a stable antiferromagnetic state
with a large Tc. The same relation is, in principle, true for the
cobalt density. However, there are fewer compounds contain-
ing cobalt in the data than iron. The Nickel density has—for
increasing densities—a negative impact on Tc according to
Fig. 8, and as we can see in Fig. 9, this also emerges from
the data. It seems that the presence of Cobalt is not as helpful
in contributing to a stable magnetic state as e.g., iron.

Insights from feature importance analysis can be used to
deepen our understanding of how the modeled target quantity
(in this case the critical temperature) correlates to different
features. There is no guarantee that this correlation has an
underlying causal relationship. Nevertheless, the feature im-
portance analysis can suggest further points of investigation
into certain features over others which are not limited to, e.g.,
linear correlation.

Additionally, the insights from feature importance analysis
can assist in selecting promising candidates prior to any com-
putation or experimentation depending on which information
is available beforehand. One example of such an insight is
that an increasing nickel density seems not to favor a large
critical temperature. The features found relevant should be
considered as starting points for further investigation. Such
observed trends and correlations could be used in a high-
throughput simulation context to prioritize compounds prior
to computation in order to compute correlative more promis-
ing compounds, based on the feature importance, first. While
this can be applied for Heusler alloys and the critical temper-
ature, this approach is not limited to a material class or this
particular property to predict.

IV. SUMMARY AND OUTLOOK

This work can be seen as a small-scale sandbox-type case
study in which lightweight ML algorithms can add value to
existing ab initio data and eventually replace costly computa-
tional steps in layered calculation workflows in the future.

It was demonstrated that qualitative predictions for
material-specific properties are achievable with very small
errors, even for the limited dataset sizes common in materials
science. Also, the expectation that the quantitative predic-
tion is much more difficult and requires descriptors with
much higher predictive power, has been confirmed. However,
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FIG. 9. Relation between Tc and the fraction of ferromagnetic elements (left), cobalt atoms (center), and nickel (right) shown as a heatmap-
style histogram. The darker the color, the more compounds can be found in the colored region.

we could also demonstrate that even very simple and read-
ily available descriptors not based on any actual calculation
in combination with sufficiently complex models could be
utilized in a classification task typically part of any high
throughput screening. As demonstrated in this paper, there is
a potential use for ML methods in materials science, even in
quantitatively predicting properties as complex as the Tc. It is
imaginable to perform similar studies on existing datasets of
other material families beyond the Heusler alloys. However,
one has to consider that the structural homogeneity of the
material class we studied here simplified the complexity of
the modeling task. This implies that if one would translate
the methodical insights gained from this dataset of Heusler
alloys to a different material class, there should either be a
similar structural homogeneity, or if the structural complexity
is increased one also has to choose descriptors with equally
elevated descriptive value.

By performing feature importance analysis with XAI
techniques—such as SHAP values—we gained physical in-
sights about the relations of the target quantity to the included
features, as well as the determining properties of the studied
material class given in the examined dataset. Such analysis
can provide a link between a complex ML process with a hard-
to-expose underlying mechanism and true physical insight and
the gain of knowledge of the system. In this study, we redis-
covered dependencies expected from simple physical models
without actually providing such knowledge to the process.

Finally, we would like to stress that the methodical ap-
proach described in this paper is not limited to predicting Tc

or any other magnetic quantity, but that it can be transferred
to any other material-specific property. We believe it is even
possible to discover that known materials have currently un-
known properties using predictive modeling.

ACKNOWLEDGMENTS

This work was performed as part of the Helmholtz School
for Data Science in Life, Earth, and Energy (HDS-LEE) and

received funding from the Helmholtz Association of German
Research Centres. Since parts of the data processing have been
performed and the displayed visualizations have been created
using dedicated open-source packages, we acknowledge them
here [59–67]. We acknowledge Stefano Sanvito for the in-
spiration to represent the fractional density of each atomic
number in the dataset as a standalone descriptor, which we
gathered from one of his talks. The authors thank Fabian Lux
for initially hinting at the extra trees regression model. We
acknowledge Dirk Witthaut for pointing out the advantages of
SHAP values in XAI in comparison to model-bound feature
importance methods. We want to acknowledge the productive
work together with the reviewers to improve the clarity and
content of the manuscript. The authors thank Roman Kováčik
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APPENDIX

In order to provide a broader view on the presented
approach we also computed binary classification scores of
models using different thresholds. Previously, in the classi-
fication process the threshold has been chosen to be 200 ◦C.
Table VI provides scores for models trained on thresholds
30 ◦C, 60 ◦C, 90 ◦C using the complete feature set, including
DFT-originated features. Table VII shows the scores using the
same thresholds for models trained on the reduced feature set,
without the DFT-originated descriptors.
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