001041740 001__ 1041740
001041740 005__ 20250507203500.0
001041740 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02416
001041740 037__ $$aFZJ-2025-02416
001041740 041__ $$aEnglish
001041740 1001_ $$0P:(DE-Juel1)190575$$aBaumann, Thomas$$b0$$eCorresponding author$$ufzj
001041740 1112_ $$aNumerical algorithms seminar at University of Exeter$$cExeter$$wUK
001041740 245__ $$aSpectral Deferred Correction$$f2025-01-30 - 
001041740 260__ $$c2025
001041740 3367_ $$033$$2EndNote$$aConference Paper
001041740 3367_ $$2DataCite$$aOther
001041740 3367_ $$2BibTeX$$aINPROCEEDINGS
001041740 3367_ $$2ORCID$$aLECTURE_SPEECH
001041740 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1746606389_7883$$xInvited
001041740 3367_ $$2DINI$$aOther
001041740 520__ $$aSpectral deferred correction (SDC) is a time integration method that is closely related to Runge-Kutta methods (RKM). In SDC, fully implicit RKM are solved iteratively, using similar computations as required to compute the stages in RKM. While explicit SDC often cannot compete with explicit RKM, SDC has been shown to perform very well for stiff PDEs. One major advantage of SDC is the flexibility afforded by using a low-order solver inside an iterative method for obtaining high-order solutions. This makes it simple to construct high-order splitting methods, for instance. SDC is also popular in the parallel-in-time community. Efficient small-scale parallelism within the method has recently been achieved and SDC is also employed within various parallel-in-time algorithms. This talk will encompass an introduction to SDC, some recent developments, numerical experiments where time-parallel SDC is preferable to RKM, and an advertisement for the prototyping library pySDC, which allows to rapidly explore all things SDC.
001041740 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001041740 536__ $$0G:(EU-Grant)955701$$aTIME-X - TIME parallelisation: for eXascale computing and beyond (955701)$$c955701$$fH2020-JTI-EuroHPC-2019-1$$x1
001041740 8564_ $$uhttps://juser.fz-juelich.de/record/1041740/files/SDC.pdf$$yOpenAccess
001041740 909CO $$ooai:juser.fz-juelich.de:1041740$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
001041740 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190575$$aForschungszentrum Jülich$$b0$$kFZJ
001041740 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001041740 9141_ $$y2025
001041740 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041740 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001041740 9801_ $$aFullTexts
001041740 980__ $$atalk
001041740 980__ $$aVDB
001041740 980__ $$aUNRESTRICTED
001041740 980__ $$aI:(DE-Juel1)JSC-20090406