
Spectral Deferred Correction
January 30, 2024 Thomas Baumann Jülich Supercomputing Centre

Member of the Helmholtz Association

Collocation Methods
Want to solve initial value problem in integral form:

[ut(t) = f (t,u), u(t0) = u0] ⇐⇒
[
u(t) = u0 +

∫ t

t0

f (s,u)ds
]

Discretize integral with quadrature rule:
Discretize [t0,t0 + ∆t] at M quadrature nodes τm: t0 ≤ τm ≤ t0 + ∆t
Approximate f by polynomial interpolation:

f (t,u) ≈
M∑

j=1
f (τj ,u(τj)) lτj (t)

using Lagrange polynomials

lτj (t) =
ΠM

k=1,k 6=j(t − τk)
ΠM

k=1,k 6=j(τj − τk)
with lτj (τi) = δij

Member of the Helmholtz Association January 30, 2024 Slide 1

Collocation Methods
Want to solve initial value problem in integral form:

[ut(t) = f (t,u), u(t0) = u0] ⇐⇒
[
u(t) = u0 +

∫ t

t0

f (s,u)ds
]

Discretize integral with quadrature rule:
Discretize [t0,t0 + ∆t] at M quadrature nodes τm: t0 ≤ τm ≤ t0 + ∆t
Approximate f by polynomial interpolation:

f (t,u) ≈
M∑

j=1
f (τj ,u(τj)) lτj (t)

using Lagrange polynomials

lτj (t) =
ΠM

k=1,k 6=j(t − τk)
ΠM

k=1,k 6=j(τj − τk)
with lτj (τi) = δij

Member of the Helmholtz Association January 30, 2024 Slide 1

Collocation Methods
Want to solve initial value problem in integral form:

[ut(t) = f (t,u), u(t0) = u0] ⇐⇒
[
u(t) = u0 +

∫ t

t0

f (s,u)ds
]

Discretize integral with quadrature rule:
Discretize [t0,t0 + ∆t] at M quadrature nodes τm: t0 ≤ τm ≤ t0 + ∆t
Approximate f by polynomial interpolation:

f (t,u) ≈
M∑

j=1
f (τj ,u(τj)) lτj (t)

using Lagrange polynomials

lτj (t) =
ΠM

k=1,k 6=j(t − τk)
ΠM

k=1,k 6=j(τj − τk)
with lτj (τi) = δij

Member of the Helmholtz Association January 30, 2024 Slide 1

Collocation Methods Continued

Recall polynomial approximation: f (t,u) ≈
∑M

j=1 f (τj ,u(τj)) lτj (t)
Plug into continuous equation:

u(τm) = u0 +
∫ τm

t0

f (s,u)ds ≈ u0 +
∫ τm

t0

M∑
j=1

f (τj ,u(τj)) lτj (s)ds (1)

= u0 +
M∑

j=1
f (τj ,u(τj))

∫ τm

t0

lτj (s)ds = u0 +
M∑

j=1
qm,j f (τj ,u(τj)) (2)

Use quadrature rule Q from integrating Lagrange polynomials to approximate the integral!

Member of the Helmholtz Association January 30, 2024 Slide 2

Collocation Methods Continued
Use vector notation and rescale quadrature nodes from 0 to 1:

(~u)m = um ≈ u(τm), (~τ)m = τm, (~u0)m = u0, (Q)m,j = qm,j , (f (~u))m = f (τm,um)

~u = ~u0 + ∆tQf (~u)

Recap:
Approximate right-hand side by a degree M polynomial
Use quadrature rule to integrate the polynomial exactly
For special ~τ , the solution at t + ∆t has up to order 2M
Corresponds to fully implicit Runge-Kutta method, Butcher matrix Q
Problem: Q is dense =⇒ direct solve is very expensive!

Member of the Helmholtz Association January 30, 2024 Slide 3

Collocation Methods Continued
Use vector notation and rescale quadrature nodes from 0 to 1:

(~u)m = um ≈ u(τm), (~τ)m = τm, (~u0)m = u0, (Q)m,j = qm,j , (f (~u))m = f (τm,um)

~u = ~u0 + ∆tQf (~u)

Recap:
Approximate right-hand side by a degree M polynomial
Use quadrature rule to integrate the polynomial exactly
For special ~τ , the solution at t + ∆t has up to order 2M
Corresponds to fully implicit Runge-Kutta method, Butcher matrix Q
Problem: Q is dense =⇒ direct solve is very expensive!

Member of the Helmholtz Association January 30, 2024 Slide 3

Spectral Deferred Correction
Dutt, Greengard and Rokhlin, 2000

Basic idea
Use spectral quadrature rule to get solutions of order 2M or 2M − 1 (or 2M − 2)
Solve equation for the error with simple quadrature rule (originally Euler) and refine the solution
Iterate

Key innovation: Apply deferred corrections to integral form of initial value problem

Member of the Helmholtz Association January 30, 2024 Slide 4

Error Equation
Error at iteration k depends on unknown exact solution:

δk(t) = u(t)− ~uk~lτ (t)
Plugging error into initial value problem gives:

δk(t)−
∫ t

0

(
f
(
~uk~lτ (s) + δk(s)

)
− f

(
~uk~lτ (s)

))
ds = r k(t)

Residual depends only on available quantities:

r k(t) = u0 +
∫ t

0
f (~uk~lτ (s))ds − ~uk~lτ (t)

Discretize error equation with "some" quadrature rule Q∆ at the same nodes τ :
~δk −∆tQ∆

(
f
(
~uk + ~δk

)
− f

(
~uk)) = ~r k

Solve this for ~δk and update the solution:
~uk+1 = ~uk + ~δk

Member of the Helmholtz Association January 30, 2024 Slide 5

Error Equation
Error at iteration k depends on unknown exact solution:

δk(t) = u(t)− ~uk~lτ (t)
Plugging error into initial value problem gives:

δk(t)−
∫ t

0

(
f
(
~uk~lτ (s) + δk(s)

)
− f

(
~uk~lτ (s)

))
ds = r k(t)

Residual depends only on available quantities:

r k(t) = u0 +
∫ t

0
f (~uk~lτ (s))ds − ~uk~lτ (t)

Discretize error equation with "some" quadrature rule Q∆ at the same nodes τ :
~δk −∆tQ∆

(
f
(
~uk + ~δk

)
− f

(
~uk)) = ~r k

Solve this for ~δk and update the solution:
~uk+1 = ~uk + ~δk

Member of the Helmholtz Association January 30, 2024 Slide 5

Error Equation Continued

What have we gained?
→ Nothing, if we solve the error equation with the same Q∆ = Q we used for the collocation problem!

Need simpler quadrature rule Q∆ (called preconditioner) to solve for the error.
For instance, implicit Euler:

Q∆ =


τ2 − τ1 0 0 . . . 0
τ2 − τ1 τ3 − τ2 0 . . . 0

...
...

. 0
τ2 − τ1 τ3 − τ2 τM − τM−1



Member of the Helmholtz Association January 30, 2024 Slide 6

Error Equation Continued
Resulting iteration after algebraic manipulation:

(I −∆tQ∆f) (~uk+1) = ~u0 + ∆t (Q − Q∆) f (~uk)

Compare to vanilla implicit Euler:
(1−∆tf) (u) = u0

Now did we gain something?
We better choose Q∆ lower triangular such we can solve with forward substitution
We just need to solve implicit Euler steps with modified step size and right-hand side
If we choose Q∆ diagonal, we can solve for the nodes in parallel!
Consider PDE with N degrees of freedom: Collocation problem is size NM × NM, but if SDC
convergences after K iterations, it requires KM solves of N × N systems
Typically, gain one order of accuracy per iteration, dependent on Q∆ and problem

Member of the Helmholtz Association January 30, 2024 Slide 7

Modern Interpretation of SDC

Consider fully implicit collocation problem: (I −∆tQf)(~u) = ~u0

Simplest iterative approach: Picard iteration:

~uk+1 = ~uk −
(
(I −∆tQf)(~uk)− ~u0

)︸ ︷︷ ︸
~rk

→ poor stability because it is explicit
Precondition the Picard iteration with Q∆:

(I −∆tQ∆f) (~uk+1) = ~u0 + ∆t (Q − Q∆) f (~uk)

Looks familiar! SDC = preconditioned Picard iteration

Member of the Helmholtz Association January 30, 2024 Slide 8

Modern Interpretation of SDC Continued
Construct SDC iteration matrix

Consider linear test equation: ut = λu
SDC iteration becomes:

~uk+1 = (I −∆tQ∆λ)−1∆t (Q − Q∆)λ~uk︸ ︷︷ ︸
G~uk

+ (I −∆tQ∆λ)−1~u0︸ ︷︷ ︸
c

Error behaves as ~ek+1 = G~ek

Convergence:
Look for Q∆ with ρ(G) < 1
Look for Q∆ with ||G || < 1
Look for Q∆ that make G nilpotent

Q∆ is now a preconditioner and not necessarily a quadrature rule!

Member of the Helmholtz Association January 30, 2024 Slide 9

Modern Interpretation of SDC Continued
Look at stiff limit of SDC iteration matrix

Stiff limit λ→ −∞, λ ∈ R:
~ek+1 ≈

(
I − Q−1

∆ Q
)︸ ︷︷ ︸

G

~ek

LU: Q∆ = UT with LU = QT and Lii = 1

G = I −
(
UT)−1 UT LT = I − LT

is strictly upper triangular and hence nilpotent (Weiser, 2015)

MIN: Numerically minimize spectral radius of G with Q∆ diagonal (Speck, 2017)

Member of the Helmholtz Association January 30, 2024 Slide 10

Why bother with SDC?

SDC is closely related to Runge-Kutta
Converged collocation problem solution is solution to fully implicit Runge-Kutta method
SDC with fixed number of iterations is a Runge-Kutta method
(Keep an eye out for work by Fregin and Bronasco)
For non-stiff problems, explicit Runge-Kutta methods are very hard to beat with SDC

but...
Special time-marching schemes easier to construct in low order, use SDC to get higher order
Can accelerate SDC with inexactness, adaptive resolution between iterations, ...
Parallel-in-Time (PinT) extensions

→ Much greater flexibility than most other RK schemes

Member of the Helmholtz Association January 30, 2024 Slide 11

Example of SDC flexibility: Implicit-Explicit splitting
Ruprecht and Speck, 2016

Replace Q∆f with Q∆,I fI + Q∆,E fE in SDC iteration
Choose Q∆,E strictly lower triangular for explicit integration
Done

Member of the Helmholtz Association January 30, 2024 Slide 12

Parallel-in-Time extensions
Parallelization across the method

Compute all M stages concurrently via diagonal Q∆

See recent work by Caklovic, Lunet, Götschel and Ruprecht (2024):
MIN-SR-NS: Nilpotent in the non-stiff limit
MIN-SR-S: Numerically minimize ρ(G) in the stiff limit, but good!
MIN-SR-FLEX: Nilpotent in the stiff limit, but Q∆ changes between iterations

Member of the Helmholtz Association January 30, 2024 Slide 13

Parallel-in-Time extensions
Parallelization across the steps

Start by assembling composite collocation problem by gluing together L steps with transfer operator N
I −∆tQF
−N I −∆tQF

.
−N I −∆tQF



~u1
~u2
...
~uL

 =


~u0
0
...
0



Then solve in parallel using, for instance,
Pipelining, i.e. iterate block Gauß-Seidel (Guibert and Tromeur-Dervout, 2007)
PFASST (Emmett and Minion, 2012)

Member of the Helmholtz Association January 30, 2024 Slide 14

Parallel-in-Time extensions
Block Gauß-Seidel pipelining

1

2

3

4

5

6

7

8

9

Time

Accuracy Iteration Initial condition

1, 2, 3, ... : order of computational stage

Time

Accuracy Iteration Initial condition

1, 2, 3, ... : order of computational stage

1

2

3

2

3

4

3

4

5

Start iteration on step as soon as one iteration has been performed on previous step

Figures by Thibaut Lunet
Member of the Helmholtz Association January 30, 2024 Slide 15

Step size adaptivity in SDC
T.B., Lunet, Götschel, Ruprecht, Speck (2024)

Transfer ideas from embedded RKM
Use same step size update equation
Use bespoke error estimates

Algorithm 1: ∆t-adaptivity

Constant number of iterations, adaptive step size
Error estimate based on getting order k after k iterations

Algorithm 2: ∆t-k-adaptivity

Choose both ∆t and k adaptively
Error estimate based on polynomial interpolation defined by converged collocation problem

Member of the Helmholtz Association January 30, 2024 Slide 16

Time-parallel adaptive SDC vs. embedded RKM

1005× 10−1 2× 100

wall clock time / s

10−9

10−6

re
la

ti
v
e

g
lo

b
a
l

er
ro

r Van der Pol

10−1 100

wall clock time / s

10−8

10−5

re
la

ti
v
e

g
lo

b
a
l

er
ro

r Lorenz attractor

100 101

wall clock time / s

10−7

10−5

10−3

re
la

ti
v
e

g
lo

b
a
l

er
ro

r Gray-Scott

102

wall clock time / s

10−6

10−4

re
la

ti
v
e

g
lo

b
a
l

er
ro

r Rayleigh-Benard

ESDIRK5(3)

∆t-k-adaptivity N=1x3

∆t-adaptivity N=4x1

CK5(4)

∆t-k-adaptivity N=4x3

∆t-adaptivity N=4x3

ARK5(4)

ARK3

∆t-k-adaptivity N=1x2

∆t-adaptivity N=1x1

At least mode of adaptive PinT SDC is always competitive with RKM for stiff problems
In Rayleigh-Benard, no high order comparison RKM available, SDC still better at order 3

Member of the Helmholtz Association January 30, 2024 Slide 17

Parallel scaling of Gray-Scott implementation

100 101 102 103

Nnodes

10−1

100

101

102

t s
te

p
/

s

CPU 5123

CPU PinT 5123

CPU 10243

CPU PinT 10243

GPU PinT 5123

GPU 5123

GPU PinT 10243

GPU 10243

GPU PinT 23043

GPU 23043

GPU PinT 44803

GPU 44803

ideal

100 101 102 103

Nnodes

106

107

108

109

1010

th
ro

u
g
h
p
u
t

/
D

o
F

/
s

CPU 5123

CPU PinT 5123

CPU 10243

CPU PinT 10243

GPU PinT 5123

GPU 5123

GPU PinT 10243

GPU 10243

GPU PinT 23043

GPU 23043

GPU PinT 44803

GPU 44803

ideal

Use diagonal SDC to extend scaling

Shifts communication from all-to-all to reduce in this spectral discretization
Improves strong scaling
Enables scaling up to 3584 GPUs

Member of the Helmholtz Association January 30, 2024 Slide 18

Parallel SDC for Navier-Stokes equations
Monolithic SDC with diagonal preconditioners (Abdelouahed Ouardghi)

Figure: Left: Flow around the cylinder, DFG95 benchmark. Right:
Speedup with diagonal SDC

Member of the Helmholtz Association January 30, 2024 Slide 19

PFASST-ER: PFASST + diagonal SDC
Schöbel, Speck (2019)

Idea: Use parallel SDC sweeps within parallel time-steps
Example: 2D Allen-Cahn, fully-implicit, 256x256 DOFs in space, up to 24 available cores.

1 2 3 6 12 24

Cores for time-steps

1

2

4

C
o
re
s
fo
r
ti
m
e
-n
o
d
e
s

88.5

31.1

56.1

38.3

65.9

32.954.8 40.8

44.3

113.0

69.1

54.9

51.1

85.7165.7

Member of the Helmholtz Association January 30, 2024 Slide 20

<commercial>

pySDC - Prototyping Spectral Deferred Corrections

Test before you invest at https://parallel-in-time.org/pySDC

→

Member of the Helmholtz Association January 30, 2024 Slide 21

https://parallel-in-time.org/pySDC

pySDC - Prototyping Spectral Deferred Corrections
Test before you invest at https://parallel-in-time.org/pySDC

Tutorials and examples

Ships with a lot of examples
Many SDC flavors up to
PFASST
Problems beyond heat equation

Python

Interface compiled code for
expensive spatial solves
Implementation close to
formulas

Parallel and serial
Serial algorithms
Pseudo-parallel algorithms
Time-parallel algorithms
Space-time parallel algorithms

CI/CD/CT

Well documented
Well tested
Works on my machine anywhere
Reproduce paper results

Member of the Helmholtz Association January 30, 2024 Slide 22

https://parallel-in-time.org/pySDC

Code separated into modules
Problem

implicit Euler like solves
evaluate right hand side
initial conditions, maybe exact solution
use your own datatype

Callbacks: Modify anything at any time

solution
step size
sweeper
...

Sweeper: Timestepping

assembles and calls solves in problem class
administers right hand side evaluations
takes care of Q∆, splitting etc.
DIRK methods available as sweepers

Hooks: Extract anything at any time

Newton / SDC iterations and f evaluations
wall time
error
...

Member of the Helmholtz Association January 30, 2024 Slide 23

pySDC is now compatible with Firedrake and Gusto!

How to use
Setup custom problem class using Firedrake
Setup any SDC scheme in pySDC and use as Gusto time discretization
Works with space-time parallel simulations
See tutorials, step 7 on the pySDC github page (scan QR code)

Member of the Helmholtz Association January 30, 2024 Slide 24

</commercial>

Three takeaways

Spectral Deferred Corrections (SDC) are a great playground for
research on time integration methods

Lots of SDC variants and their combination can lead to highly
competitive time integration methods

1 2 3 6 12 24

Cores for time-steps

1

2

4

C
o
re
s
fo
r
ti
m
e
-n
o
d
e
s

88.5

31.1

56.1

38.3

65.9

32.954.8 40.8

44.3

113.0

69.1

54.9

51.1

85.7165.7

Prototyping ideas, with real code, on real (parallel) machines, is
crucial to find out about potential and limitations

Member of the Helmholtz Association January 30, 2024 Slide 25

	Introduction

