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Collocation Methods

Want to solve initial value problem in integral form:

[0e(t) = F(£,u), u(to) = ug] — [u(t) _ u0+/t f(s,u)ds}

to

@) JiLich

Member of the Helmholtz Association January 30, 2024 Slide 1



Collocation Methods

Want to solve initial value problem in integral form:

[0e(t) = F(£,u), u(to) = ug] — [u(t) _ u0+/t: f(s,u)ds}

Discretize integral with quadrature rule:
= Discretize [ty,to + At] at M quadrature nodes 7p,: to < 7y < to + At
= Approximate f by polynomial interpolation:

f(tu) = Z F(75,u(7)) 1 (t)
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Collocation Methods

Want to solve initial value problem in integral form:

[0e(t) = F(£,u), u(to) = ug] — [u(t) _ u0+/t: f(s,u)ds}

Discretize integral with quadrature rule:
= Discretize [ty,to + At] at M quadrature nodes 7p,: to < 7y < to + At
= Approximate f by polynomial interpolation:

f(tu) = }{j F(75,u(7)) 1 (t)

using Lagrange polynomials

. MR ks (t = 7k) . -
HOES=" ’#( p— with 7 (7;) = 0
k=1,kj\Tj — Tk
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Collocation Methods Continued

s Recall polynomial approximation: f(t,u) = Zjl‘il f(rj,u(m)) I7(t)

= Plug into continuous equation:

u(Tm) = u0+/7m F(s,u)ds ~ uo +/tTme(Tj,u(Tj)) 7 (s)ds (1)

} . M
=+ Y Fu(n) [ s = Y anflran) @

= Use quadrature rule @ from integrating Lagrange polynomials to approximate the integral!
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Collocation Methods Continued

Use vector notation and rescale quadrature nodes from 0 to 1:
(@)m = tm = U(Tm), (F)m = T, (o) m = to, (Q)mj = qm,js (F(8))m = f(Tm,tm)

i = iio + AtQF (@)
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Collocation Methods Continued

Use vector notation and rescale quadrature nodes from 0 to 1:
(@)m = tm = U(Tm), (F)m = T, (o) m = to, (Q)mj = qm,js (F(8))m = f(Tm,tm)

i = iio + AtQF (@)

Recap:
= Approximate right-hand side by a degree M polynomial
= Use quadrature rule to integrate the polynomial exactly
= For special 7, the solution at t + At has up to order 2M
= Corresponds to fully implicit Runge-Kutta method, Butcher matrix @
= Problem: @ is dense = direct solve is very expensive!
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Spectral Deferred Correction
Dutt, Greengard and Rokhlin, 2000

Basic idea
= Use spectral quadrature rule to get solutions of order 2M or 2M — 1 (or 2M — 2)
= Solve equation for the error with simple quadrature rule (originally Euler) and refine the solution

= |terate

Key innovation: Apply deferred corrections to integral form of initial value problem
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Error Equation

= Error at iteration k depends on unknown exact solution:
5K(t) = u(t) — @77 (t)
= Plugging error into initial value problem gives:
t
5%(¢) —/ (F (@7(s) + 8*(5)) — £ (#77(s)) ) ds = (1)
0

= Residual depends only on available quantities:

rk = u ‘ K17 (s))ds — G<T™
(1) o+/0f( (s))ds — 2T (1)
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Error Equation

= Error at iteration k depends on unknown exact solution:
5K(t) = u(t) — @77 (t)
= Plugging error into initial value problem gives:
t
5%(¢) —/ (F (@7(s) + 8*(5)) — £ (#77(s)) ) ds = (1)
0

Residual depends only on available quantities:

rk = u ‘ K17 (s))ds — G<T™
(1) o+/0f( (s))ds — 2T (1)

= Discretize error equation with "some" quadrature rule Qa at the same nodes 7:
5 — AeQa (F (0 +5) — £ () = 7

= Solve this for 5% and update the solution:

l_jk+1 _ L_jk + 5/(
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Error Equation Continued

What have we gained?
— Nothing, if we solve the error equation with the same Qa = @ we used for the collocation problem!

Need simpler quadrature rule Qa (called preconditioner) to solve for the error.
For instance, implicit Euler:

T2 —T1 0 0 0
T2 —T1 T3 — T2 0 0
Qa =
0
To —T1 T3 — T2 oo TM — TM-—1
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Error Equation Continued

Resulting iteration after algebraic manipulation:
(I — AtQaF) (T = Ty + At (Q — Qa) F(d¥)

Compare to vanilla implicit Euler:
(1 — Atf) (u) = up
Now did we gain something?
= We better choose Qa lower triangular such we can solve with forward substitution
= We just need to solve implicit Euler steps with modified step size and right-hand side

= If we choose Qa diagonal, we can solve for the nodes in parallel!

= Consider PDE with N degrees of freedom: Collocation problem is size NM x NM, but if SDC
convergences after K iterations, it requires KM solves of N x N systems

= Typically, gain one order of accuracy per iteration, dependent on Qa and problem
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Modern Interpretation of SDC

Consider fully implicit collocation problem: (I — AtQf)(d) = do

Simplest iterative approach: Picard iteration:

it =" — (1 — AtQF)(d*) — io)

rk

— poor stability because it is explicit
= Precondition the Picard iteration with Qa:

(I — AtQaf) (¥ = bp + At (Q — Qa) F(T¥)
= Looks familiarl SDC = preconditioned Picard iteration
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Modern Interpretation of SDC Continued

Construct SDC iteration matrix

Consider linear test equation: u; = Au

SDC iteration becomes:

0 = (I — AtQaN) 1AL (Q — Qa) Ai¥ + (1 — AtQaN) "ty

Gk c

= Error behaves as &kt1 = Ge&k

= Convergence:
= Look for Qa with p(G) < 1
= Look for Qa with ||G]| < 1
= Look for Qa that make G nilpotent

Qa is now a preconditioner and not necessarily a quadrature rule!
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Modern Interpretation of SDC Continued

Look at stiff limit of SDC iteration matrix

Stiff limit A = —o0, A € R:

&~ (1- Qy1Q) &
G

= LU: Qa = UT with LU=Q7 and L; =1
G=I—(UN) T UTLT=1-1T
is strictly upper triangular and hence nilpotent (Weiser, 2015)

= MIN: Numerically minimize spectral radius of G with Qa diagonal (Speck, 2017)
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Why bother with SDC?

SDC is closely related to Runge-Kutta
= Converged collocation problem solution is solution to fully implicit Runge-Kutta method

= SDC with fixed number of iterations is a Runge-Kutta method
(Keep an eye out for work by Fregin and Bronasco)

= For non-stiff problems, explicit Runge-Kutta methods are very hard to beat with SDC

but...
= Special time-marching schemes easier to construct in low order, use SDC to get higher order
= Can accelerate SDC with inexactness, adaptive resolution between iterations, ...

= Parallel-in-Time (PinT) extensions

— Much greater flexibility than most other RK schemes
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Example of SDC flexibility: Implicit-Explicit splitting

Ruprecht and Speck, 2016

= Replace Qaf with Qa ifi + Qa,efe in SDC iteration
= Choose Qa £ strictly lower triangular for explicit integration

= Done
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Parallel-in-Time extensions

Parallelization across the method

Compute all M stages concurrently via diagonal Qa

See recent work by Caklovic, Lunet, Gétschel and Ruprecht (2024):
= MIN-SR-NS: Nilpotent in the non-stiff limit
= MIN-SR-S: Numerically minimize p(G) in the stiff limit, but good!
= MIN-SR-FLEX: Nilpotent in the stiff limit, but QA changes between iterations

@) JiLich

Member of the Helmholtz Association January 30, 2024 Slide 13



Parallel-in-Time extensions

Parallelization across the steps

Start by assembling composite collocation problem by gluing together L steps with transfer operator N

| — AtQF th tip
—N | — AtQF i 0
—-N I—AtQF) \i, 0

Then solve in parallel using, for instance,
= Pipelining, i.e. iterate block GauB-Seidel (Guibert and Tromeur-Dervout, 2007)
= PFASST (Emmett and Minion, 2012)
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Parallel-in-Time extensions
Block GauB-Seidel pipelining

Accuracy P [teration —> Initial condition Accuracy =P [teration —> Initial condition
1, 2, 3, ... : order of computational stage 1, 2, 3, ... : order of computational stage
3 6 9 3 N4 5
2 t 5 ) 8 t 2 t N3 ) N} t
1 t 4 t 7 t Time 1 t N2 t N3 t Time
t t ' t t >
At At At At At At
Start iteration on step as soon as one iteration has been performed on previous step
Figures by Thibaut Lunet ¢) siLic
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Step size adaptivity in SDC

T.B., Lunet, Goétschel, Ruprecht, Speck (2024)

Transfer ideas from embedded RKM

= Use same step size update equation
= Use bespoke error estimates

Algorithm 1: At-adaptivity

= Constant number of iterations, adaptive step size

= Error estimate based on getting order k after k iterations

Algorithm 2: At-k-adaptivity

= Choose both At and k adaptively
= Error estimate based on polynomial interpolation defined by converged collocation problem
9) 1uicH
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Time-parallel adaptive SDC vs. embedded RKM

relative global error

Van der Pol

. ‘
5 x 1074002 x 10°

wall clock time / s

ESDIRKS5(3)

== At-k-adaptivity N=1x3
=t At-adaptivity N=4x1

relative global error

Lorenz attractor Gray-Scott Rayleigh-Benard
- -
- : 1073 :
5 P ‘:} ;: % 10—4 +
107° + * \-
*.*‘ 9 § 10-5 ﬁ
* N\ 0 o0 -6
. O 10 —
1075 1 X £ 1074 z
3 =
SNSRI, S 8
10-1 10° 10° 10t
wall clock time / s wall clock time / s wall clock time / s
CK5(4) —+— ARKS5(4) =+ At-k-adaptivity N=1x2
+++ At-k-adaptivity N=4x3 —<— ARK3 == - At-adaptivity N=1x1

«eke« At-adaptivity N=4x3

= At least mode of adaptive PinT SDC is always competitive with RKM for stiff problems
= In Rayleigh-Benard, no high order comparison RKM available, SDC still better at order 3
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Parallel scaling of Gray-Scott implementation

107 4 1010 4 »
—— CPU512% 4 =~ CPU 512%
=>- CPU PinT 512° —>- CPU PinT 512%
= CPU 10243 =% CPU 1024*
o | :
o . —<- CPU PinT 1024 2 10 =< CPU PinT 1024%
GPU PinT 5123 3 GPU PinT 512°
= —— GPU 512% = —— GPU 5123
s GPU PinT 1024% 2 1084 GPU PinT 1024*
K —— GPU 1024% = —— GPU 1024%
%
10° 5 GPU PinT 23043 H . GPU PinT 2304*
—— GPU 23043 E 20 —— GPU 2304*
GPU PinT 4480% 107 4 )T;V GPU PinT 44803
—e— GPU 4480° ";f) —e— GPU 4480°
| seesideal / =e+= ideal
10 e
. 10°4 »
T T T T T T T T
10° 10! 107 10% 10° 10! 107 10°
Nuodes

Use diagonal SDC to extend scaling

= Shifts communication from all-to-all to reduce in this spectral discretization
= Improves strong scaling

= Enables scaling up to 3584 GPUs
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Parallel SDC for Navier-Stokes equations
Monolithic SDC with diagonal preconditioners (Abdelouahed Ouardghi)

04 s

Strong scaling speedup

4.0 —e— Measured Speedup »
-#- |deal Speedup

Number of processors

Figure: Left: Flow around the cylinder, DFG95 benchmark. Right:
Speedup with diagonal SDC

)0
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PFASST-ER: PFASST + diagonal SDC

Schébel, Speck (2019)

Idea: Use parallel SDC sweeps within parallel time-steps

Example: 2D Allen-Cahn, fully-implicit, 256x256 DOFs in space, up to 24 available cores.

N
1

113.0 85.7 65.9 56.1 54.9

[y

Cores for time-nodes
[\]
|

T T T T T
1 2 3 6 12 24

Cores for time-steps
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pySDC - Prototyping Spectral Deferred Corrections

Test before you invest at https://parallel-in-time.org/pySDC
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https://parallel-in-time.org/pySDC

pySDC - Prototyping Spectral Deferred Corrections

Test before you invest at https://parallel-in-time.org/pySDC

Tutorials and examples Parallel and serial

= Ships with a lot of examples g = Serial algorithms L-‘kﬁ
= Many SDC flavors up to e = Pseudo-parallel algorithms R

s @v/.

PFASST = = Time-parallel algorithms

= Problems beyond heat equation [F===— = Space-time parallel algorithms

CI/CD/CT

= Interface compiled code for = Well documented -
expensive spatial solves = Well tested
. SPEED .
= Implementation close to LIMIT = Works en-my-machine anywhere QO o
formulas 10 = Reproduce paper results O

) JiLicH

Member of the Helmholtz Association January 30, 2024 Slide 22


https://parallel-in-time.org/pySDC

Code separated into modules

Sweeper: Timestepping

= implicit Euler like solves = assembles and calls solves in problem class

= evaluate right hand side = administers right hand side evaluations

= initial conditions, maybe exact solution s takes care of Qa, splitting etc.

= use your own datatype = DIRK methods available as sweepers
Callbacks: Modify anything at any time Hooks: Extract anything at any time

= solution = Newton / SDC iterations and f evaluations

= step size = wall time

= sweeper = error

. . | I
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pySDC is now compatible with Firedrake and Gusto!

t =49.7 days
min: -6.60e-05, max: 7.31e-05 min: 5043.11, max: 5958.13

—1.0e—04 /st 1.0e—04 5000 D+ B (m) 6000

How to use

= Setup custom problem class using Firedrake

= Setup any SDC scheme in pySDC and use as Gusto time discretization
= Works with space-time parallel simulations

= See tutorials, step 7 on the pySDC github page (scan QR code)
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Three takeaways

Spectral Deferred Corrections (SDC) are a great playground for
research on time integration methods

2 88.5 69.1 51.1 443 .

1180 857 659 561 54.9

Lots of SDC variants and their combination can lead to highly
competitive time integration methods

Cores for time-nodes

1 2 3 6 12 2
Cores for time-steps

Prototyping ideas, with real code, on real (parallel) machines, is
crucial to find out about potential and limitations
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