001     1041779
005     20250610131452.0
024 7 _ |a 10.3389/frsen.2025.1555887
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02419
|2 datacite_doi
024 7 _ |a WOS:001488134000001
|2 WOS
037 _ _ |a FZJ-2025-02419
082 _ _ |a 600
100 1 _ |a Patnala, Ankit
|0 P:(DE-Juel1)186635
|b 0
|e Corresponding author
|u fzj
245 _ _ |a BERT Bi-modal self-supervised learning for crop classification using Sentinel-2 and Planetscope
260 _ _ |a Lausanne
|c 2025
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747026523_12850
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Crop identification and monitoring of crop dynamics are essential for agricultural planning, environmental monitoring, and ensuring food security. Recent advancements in remote sensing technology and state-of-the-art machine learning have enabled large-scale automated crop classification. However, these methods rely on labeled training data, which requires skilled human annotators or extensive field campaigns, making the process expensive and time-consuming. Self-supervised learning techniques have demonstrated promising results in leveraging large unlabeled datasets across domains. Yet, self-supervised representation learning for crop classification from remote sensing time series remains under-explored due to challenges in curating suitable pretext tasks. While bimodal self-supervised approaches combining data from Sentinel-2 and Planetscope sensors have facilitated pre-training, existing methods primarily exploit the distinct spectral properties of these complementary data sources. In this work, we propose novel self-supervised pre-training strategies inspired from BERT that leverage both the spectral and temporal resolution of Sentinel-2 and Planetscope imagery. We carry out extensive experiments comparing our approach to existing baseline setups across nine test cases, in which our method outperforms the baselines in eight instances. This pre-training thus offers an effective representation of crops for tasks such as crop classification.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 1
536 _ _ |a AI Strategy for Earth system data (kiste_20200501)
|0 G:(DE-Juel1)kiste_20200501
|c kiste_20200501
|f AI Strategy for Earth system data
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 1
|u fzj
700 1 _ |a Gall, Juergen
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.3389/frsen.2025.1555887
|g Vol. 6, p. 1555887
|0 PERI:(DE-600)3091289-1
|p 1555887
|t Frontiers in remote sensing
|v 6
|y 2025
|x 2673-6187
856 4 _ |u https://juser.fz-juelich.de/record/1041779/files/frsen-1-1555887.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041779
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-17T19:06:03Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-17T19:06:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-01-17T19:06:03Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21