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Assessing the similarity of matrices is valuable for analyzing the extent to which data sets exhibit common
features in tasks such as data clustering, dimensionality reduction, pattern recognition, group comparison, and
graph analysis. Methods proposed for comparing vectors, such as cosine similarity, can be readily generalized
to matrices. However, this approach usually neglects the inherent two-dimensional structure of matrices. Here
we propose singular angle similarity (SAS), a measure for evaluating the structural similarity between two
arbitrary, real matrices of the same shape based on singular value decomposition. After introducing the measure,
we compare SAS with standard measures for matrix comparison and show that only SAS captures the two-
dimensional structure of matrices. Further, we characterize the behavior of SAS in the presence of noise, as a
function of matrix dimensionality, and when singular values are degenerate. Finally, we apply SAS to two use
cases: square nonsymmetric matrices of probabilistic network connectivity, and nonsquare matrices representing
neural brain activity. For synthetic data of network connectivity, SAS matches intuitive expectations and allows
for a robust assessment of similarities and differences. For experimental data of brain activity, SAS captures
differences in the structure of high-dimensional responses to different stimuli. We conclude that SAS is a suitable
measure for quantifying the shared structure of matrices with arbitrary shape.
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I. INTRODUCTION

Social groups, transportation systems, chemical reactions,
brains—many complex systems are governed and commonly
characterized by the pairwise interactions of their constituent
elements. Typically, these interactions are described by matri-
ces that can represent covariance structures, spatiotemporal
dependencies, or the connections and interactions in a net-
work, forming the foundation for the mathematical treatment
of such complex systems [1]. Common examples include
genetic variance [2], ecological food chains [3], or stock mar-
kets [4]. Additionally, many other types of structured data
can be represented in matrix form, ranging from test scores
for groups of subjects to parallel time series data. Quanti-
fying the similarity between such matrices is important for
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distinguishing features of the underlying systems. Examples
include the representations of stimuli in artificial and biologi-
cal neural networks. The extent to which such representations
are similar helps to address questions regarding convergent
learning, i.e., whether solutions found by neural networks are
universal or specific. Representational similarity has been in-
vestigated across different neural network architectures [5,6],
different training data [6], and different initializations of the
parameters [7]. In the context of biological neural networks,
differences in the representation within brain areas [8], be-
tween species [9] as well as between brains and artificial
neural networks [10–12] have been studied. See [13] for a
review of the topic.

Classical measures of the similarity between two matrices
A and B are often based on the Frobenius scalar prod-
uct 〈A, B〉F = tr(ABT ), leading to the Frobenius norm ||A −
B||2F = 〈A − B, A − B〉F , or the cosine similarity 〈A, B〉F

where ||A||F = ||B||F = 1 [14]. However, the Frobenius norm
and cosine similarity take into account only the numerical
values of corresponding entries of the matrices and ignore
their two-dimensional structure. For non-negative matrices,
information theory-inspired approaches have been suggested
[15,16]. These are conceptually similar in the sense that also
here the relative position of matrix entries is ignored.
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Measures partially overcoming the defect of ignoring
the two-dimensional structure of matrices include the cen-
tered kernel alignment [6,17] (CKA) and the normalized
Bures similarity [18]. For linear kernels, CKA reads as
||ABT ||2F /||AAT ||F ||BBT ||F . Other popular choices for CKA
kernels include radial basis functions. The normalized Bures
similarity is identical to CKA for linear kernels with the
exception that the Frobenius norm is replaced by the nuclear
norm. Kernel-based approaches [19–22] are also used for
assessing the similarity between graphs (represented by their
adjacency matrices; see Kriege et al. [23] for a recent survey).

Other authors propose comparisons based on correlation
coefficients or the coefficient of determination as a means to
assess similarity [8,9]. This approach is not limited to standard
Pearson correlation coefficients but instead can also employ
regularized regression analyses such as Ridge or LASSO
regression.

More involved approaches reformulate ideas borrowed
from canonical correlation analysis (CCA) [24] in the con-
text of the comparison of two matrices [25]. They rely
on the canonical angles between the subspaces spanned by
the columns of the matrices. Here, problems may arise if
the embedding space (the number of rows) is of similar
size as the number of columns and, at the same time, the
subspaces spanned by these columns are high-dimensional
(relative to the dimension of the embedding space). In this
case, the canonical angles cannot meaningfully distinguish the
subspaces, limiting the applicability of these approaches. Al-
ternatively, similarity measures based on Procrustes analysis
have been proposed [26]. Assuming that matrices A and B
are centered, the Procrustes problem asks for the minimum
of ||OA − B||F where O is an orthogonal matrix [27]. This
minimum can be interpreted as a similarity and has a direct
geometric meaning when viewing the matrix elements as co-
ordinates of points in space: the Procrustes similarity assesses
to which extent two objects, represented by the matrices A and
B, overlap after reflecting and rotating them so that the overlap
is maximized. Other formulations consider a measure like the
cosine similarity after having applied the optimal orthogonal
transformation [28]. See Ding et al. [29] or Cloos et al. [30] for
a comparison of some of the mentioned similarity measures.
Finally, for symmetric positive-definite (SPD) matrices (e.g.,
covariance matrices), similarity measures based on geodesic
distances induced by a natural Riemannian metric on the
space of SPD matrices have been studied [31,32]. The induced
distance is invariant under the action of the general linear
group on the SPD matrices and thus especially under joint
diagonalization.

Previous work addresses the comparison of symmetric
matrices using eigenangles—the angles between eigenvectors
of the compared matrices [33]. Small eigenangles indicate a
good alignment of the respective eigenspaces, enabling the
definition of a similarity score. The authors employ an an-
alytical description of the similarity score based on random
matrix theory to devise a statistical test for the comparison
of such matrices. Asymmetric matrices usually have complex
eigenvectors and eigenvalues, making their ordering ambigu-
ous. Thus, an extension of the eigenangle test to asymmetric
matrices is not straightforward. Additionally, the approach
implicitly assumes that all eigenvalues are nondegenerate.

Finally, the eigenangle test is by definition not applicable to
nonsquare matrices. In this study, we overcome these limi-
tations by proposing a refined matrix similarity measure that
naturally extends to the comparison of any two real matrices
with identical shapes. Using singular value decomposition
(SVD) instead of eigendecomposition, we derive SAS from
the respective left and right singular vectors and singular val-
ues. In this way, we vastly generalize the approach introduced
in [33] and enable a multitude of applications not possible
previously.

In Sec. II we formally define SAS and derive basic prop-
erties. Further, three types of matrices are introduced that we
use in the following for the evaluation of SAS and comparison
to other similarity measures: random matrices with contin-
uously distributed entries (Sec. II B), adjacency matrices of
random graphs (Sec. II C), and massively parallel neural activ-
ity recordings (Sec. II D). Finally, we detail how degeneracy
is gradually introduced to the singular value spectrum of ma-
trices (Sec. II E).

We start our analysis by providing a geometric interpreta-
tion of SAS (Sec. III A). Next, we compare SAS with standard
similarity measures for matrices: on the basis of generic ran-
dom matrices we show that only SAS captures certain salient
two-dimensional correlation structures (Sec. III B). This com-
parison follows a templated structure where we first calculate
the self-similarity distribution of different samples of one
random matrix class assessed by SAS. This distribution is then
compared with the cross-similarity distribution of SAS scores
from sampled random matrices of the given class with other
random matrix classes. Third, we characterize the behavior of
SAS under changes in dimensionality, perturbation of entries,
and degeneracy of singular values (Sec. III C). Fourth, we
evaluate the similarity across instances of six probabilistic
graph models that are commonly used to describe network
architecture (Sec. III D). With this use case, we demonstrate
that SAS is able to differentiate between the connectivity in
network graphs by means of their adjacency matrices. Finally,
we apply SAS on experimental data, evaluating the similarity
of brain activity in the visual cortex of macaques in response
to four different visual stimuli (Sec. III E). This application
shows that SAS can identify underlying features in the pres-
ence of realistic noise.

In conclusion (Sec. IV), we show that SAS is a well-
behaved measure for structural similarity in matrices that is
applicable in different scientific domains. It highlights shared
variability between matrices and allows for a distinction of
models or processes underlying their generation.

II. METHODS

A. Singular angle similarity

To assess the similarity of two arbitrary, real, m × n ma-
trices Ma, Mb, we devise a measure based on singular value
decomposition (SVD) [34]. Without loss of generality, we
assume m � n. SVD guarantees the existence of orthogonal
matrices Ui ∈ Rm×m and Vi ∈ Rn×n, and diagonal matrices
�i = diag(σ 1

i , . . . , σ m
i ) ∈ Rm×n where σ

j
i � σ l

i � 0 for l >

j � 1 such that

Mi = Ui�iV
T

i . (1)
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SVD

FIG. 1. Singular value decomposition and singular angles.
Schematic representation of the transformations applied on the basis
vectors e (yellow) by the components of SVD for two 2 × 2 matrices
Ma (red), and Mb (blue). Small graphs next to the green arrows
illustrate the isolated action of the corresponding transformations
V T , �, and U on e. Below the singular angles of the first [α j,+(V )
and α j,+(U )] and second [α j,−(V ) and α j,−(U )] kind are shown as
the angles between the column vectors of Va and Vb, and Ua and Ub,
respectively, as defined in Eq. (3).

Here i ∈ {a, b}. SVD is schematically presented for a 2 × 2
case in Fig. 1. The columns of Vi, denoted by v1

i , . . . , v
n
i , are

the right singular vectors, and the columns of Ui, denoted by
u1

i , . . . , um
i , are the left singular vectors. With this, the SVD

can also be written in the form

Mi =
m∑

j=1

σ
j

i u j
i ⊗ v

j
i . (2)

Here ⊗ denotes the outer product of two vectors. Thus, under
the action of Mi the vectors v

j
i are transformed into the vectors

σ
j

i u j
i . The singular values σ 1

i , . . . , σ m
i are unique—they are

the square root of the eigenvalues of MiMT
i ∈ Rm×m. We note

that if both Mi are symmetric positive-definite matrices (e.g.,
covariance matrices), then Ui = Vi, and the singular values
become the eigenvalues.

For simplicity of the derivations, we at first assume that
there are no degenerate singular values except zero. The
overwhelming majority of higher-dimensional matrices en-
countered in practice indeed satisfy this assumption.

Left and right singular vectors that correspond to non-
degenerate singular values are uniquely determined up to a
joint multiplication by −1. Thus, the vector pairs (u j

i , v
j
i )

and (−u j
i ,−v

j
i ) both are equally valid singular vectors to a

nondegenerate singular value σ
j

i � 0.
If min{σ j

a , σ
j

b } �= 0 we define the left singular angle
α j,+(U ) and the right singular angle α j,+(V ) of the first kind
as

α j,+(U ) = �
(
u j

a, u j
b

) = arccos
(〈

u j
a, u j

b

〉)
,

α j,+(V ) = �
(
v j

a, v
j
b

) = arccos
(〈
v j

a, v
j
b

〉)
. (3)

Due to the ambiguity in vector pairs of left and right singular
vectors we additionally define left singular angles of the sec-
ond kind as α j,−(U ) = �(−u j

a, u j
b) = �(u j

a,−u j
b) and mutatis

mutandis for right singular angles of the second kind α j,−(V ).
The singular angles of the first and second kinds are visualized
in Fig. 1. There we have

α j,+(U ) + α j,−(U ) = π = α j,+(V ) + α j,−(V ). (4)

Due to the ambiguity in the sign, one has to consider either
(α j,+(U ), α j,+(V )) or (α j,−(U ), α j,−(V )) together. We define
the singular angle as the smaller average of the two choices

α j = min

{
α j,+(U ) + α j,+(V )

2
,
α j,−(U ) + α j,−(V )

2

}

= min{ᾱ j, π − ᾱ j}, (5)

where ᾱ j = [α j,+(U ) + α j,+(V )]/2. Using the angular simi-
larity

� j = 1 − α j

π/2
∈ [0, 1] (6)

and defining the singular value score as w j = w(σ j
a , σ

j
b )

where w(x, y) � 0 denotes a weight function, we calculate
SAS as the weighted average of the angular similarities:

SAS =
∑k

j w
j� j

∑k
j w

j
∈ [0, 1]. (7)

Here k is the largest natural number less than or equal to m
such that min{σ k

a , σ k
b } �= 0. In the following, we choose

w(x, y) = (x + y)/2. (8)

Other possible choices include w(x, y) =
√

(x2 + y2)/2 (cf.
[33]) and w(x, y) = √

xy. One can substitute other vector-
based similarity measures for the angular similarity defined
in Eq. (6). For example, substituting cosine similarity yields
� j = cos(α j ).

According to our definition of SAS in Eq. (7), singular
angles stemming from singular vectors of which at least one
has a corresponding singular value of zero do not contribute to
SAS. By definition, SAS can be computed only for matrices
of the same shape.

a. Degenerate case. If two or more nonzero singular val-
ues are identical, the described approach cannot be readily
applied since there is no canonical choice for pairing singu-
lar vectors: left and right singular vectors uk

i , . . . , uk+l
i and

vk
i , . . . , v

k+l
i corresponding to the degenerate singular value

σ = σ k
i = · · · = σ k+l

i are only unique up to an orthogonal
transformation acting on the subspaces spanned by the sin-
gular vectors. This is the higher-dimensional generalization of
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the ambiguity regarding the factor −1 for the one-dimensional
case described above. Writing the corresponding vectors as
columns of matrices U [k:k+l]

i ∈ Rn×l and V [k:k+l]
i ∈ Rm×l , this

means that the columns of the matrices

U [k:k+l]
i O and V [k:k+l]

i O (9)

are valid left and right singular vectors. Here O ∈ Rl×l is an
arbitrary orthogonal matrix. Note that in order to maintain
consistency between the singular vectors, the same orthogonal
transformation O must be applied to both, U [k:k+l]

i and V [k:k+l]
i .

Thus, left and right singular vectors can be given only up to
this ambiguity, and consequently singular angles according to
Eq. (3) are not well defined.

This problem can be mitigated by using the canonical
angles between the subspaces spanned by the left and right
singular vectors of the matrices Mi [35]. If the two subspaces
are given in terms of orthonormal bases Bi (written again
as columns of matrices), the canonical angles are the angles
between corresponding column vectors of BaOa and BbOb,
where Oa, Ob are suitable orthogonal transformations [36]
(see Sec. S1.1 [37]). This can be interpreted as optimally
aligning the two orthonormal coordinate systems while keep-
ing the subspaces invariant.

We define singular angles for degenerate singular values
building on that interpretation: assuming without loss of gen-
erality σ = σ k

a = · · · = σ k+l
a , we define U -aligned left and

right singular angles for k � j � k + l as

α j,U (U ) = �
(
U [k:k+l]

a OU
a e j,U [k:k+l]

b OU
b e j

)
,

α j,U (V ) = �
(
V [k:k+l]

a OU
a e j,V [k:k+l]

b OU
b e j

)
. (10)

Here e j is the jth standard normal basis vector, and the orthog-
onal transformations OU

a , OU
b are chosen such that α j,U (U )

are the canonical angles. The U -aligned singular angles are
then given by the mean of the U -aligned left and right singular
angles:

α j,U = α j,U (U ) + α j,U (V )

2
. (11)

The corresponding angles in the V -aligned case are defined
mutatis mutandis. The singular angles are then given by either
the U - or V -aligned singular angles, depending on which have
the smaller sum:

α j = α j,X where X =
{

U if
∑

j α
j,U <

∑
j α

j,V

V if
∑

j α
j,V � ∑

j α
j,U . (12)

In this way, the singular angles for singular vectors corre-
sponding to degenerate singular values directly generalize the
singular angles in the nondegenerate case. For their contri-
bution to SAS, we define w j = w(σ j

a , σ
j

b ) for k � j � k + l ,
i.e., the singular values are combined in their matching order.
A complication may arise when σ k

a = · · · = σ k+l
a and σ k−m

b =
· · · = σ k+n

b for some m and n. Here the degenerate subspaces
of the two matrices are partially overlapping. We treat this
case by applying the above described method to the subspaces
given by U [k−m:k+max{n,l}]

i , V [k−m:k+max{n,l}]
i .

Additionally, if two singular values are close so that small
perturbations can lead to a change in their order, the pairing of
singular vectors will change, potentially leading to different
SAS values. This can be avoided by rounding the singular

values to a precision determined for the matrices at hand.
Thereby, degeneracy is introduced which can be treated as
described above.

b. Large matrices. For applications, it might be impractical
to compute the full SVD of the matrices Ma, Mb if n, m are
large. In this case, SAS can still be used when replacing the
full SVD with the truncated SVD [38]: instead of decompos-
ing the matrices exactly according to Eq. (1), one seeks to find
a low-rank approximation:

Mi ≈ tU t
i �

t
iV

T
i . (13)

Here tUi ∈ Rm×k and tVi ∈ Rn×k have orthogonal columns
and t�i ∈ Rk×k is a diagonal matrix with non-negative entries.
The singular values and corresponding singular vectors of the
truncated SVD are identical to the k largest singular values
of the full SVD and their corresponding singular vectors. The
order of the approximation, k, depends on the concrete ap-
plication. Note that the Eckart-Young-Mirsky theorem asserts
that this low-rank approximation is minimal with respect to
the Frobenius norm given the order k [39]. The decomposition
in Eq. (13) can straightforwardly be used to compute SAS.
The resulting similarity between matrices is still informative if
the singular values decrease in magnitude sufficiently quickly.
The validity of this assumption depends on the matrices at
hand. In practice, oftentimes only few singular values, com-
pared to the dimension of the matrices, are of large magnitude.

c. Matrices of different shapes. By definition, SAS can
be applied only to matrices of identical shape. This poses
limitations for situations in which matrices of different shapes
occur naturally. Examples include data matrices from neuro-
scientific experiments involving behavioral paradigms where
the time needed by a test animal for the completion of a task
varies between trials and subjects. While such situations can
in principle be addressed with various forms of “time warp-
ing” (see, e.g., [40] for the domain of neuroscience), similar
transformations leading to satisfactory results may not exist
in all contexts. To nonetheless assess the similarity, SAS can
be extended by zero padding the singular vectors with smaller
dimensionality so that the scalar products in Eq. (3) remain
well defined. Thereby, dimensions present only in the vectors
with larger dimensionality are neglected.

B. Random matrices

To compare SAS to standard measures of matrix similar-
ity, we define the following classes of random matrices with
shape N × N where each entry is drawn from a continuous
probability distribution. Such matrix ensemble are of great
theoretical interest and of widespread use in various domains
of science [41,42]. Numerical values for the corresponding
model parameters are summarized in Table I.

a. Uncorrelated normal matrix (UC). For random matrices
of this class, each entry is drawn independently from a normal
distribution with the same mean μ and variance σ 2. Collec-
tions of these matrices are also referred to as a real Ginibre
ensemble [43].

b. Cross-correlated normal matrix (CC). We first inde-
pendently sample N random vectors from an N-dimensional
normal distribution with mean μ and covariance matrix C

023005-4
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TABLE I. Parameters of random matrices: uncorrelated normal
matrix (UC), cross-correlated normal matrix (CC), cross-correlated
block matrix (CB), and shuffled, cross-correlated block matrix (SB).

Parameter Model(s) Meaning Value

N All Dimensionality 300
μ All Mean of distribution 0
σ 2 UC Variance of distribution 1/N
a CC Peak covariance 10
b CC Inverse characteristic length 100
blower CB Block index 10
bupper CB Block index 90

where

Ci j = a

N
exp

(
−b

|i − j|
N

)
.

Thus, the entries of the correlation matrix decay exponentially
with distance from the diagonal. The sampled vectors are the
columns of an N × N matrix K1. We repeat the process to
obtain an independent matrix K2 to finally define K = (K1 +
K2T )/2. Since each entry of the Ki is normally distributed,
so is each entry of their sum K , and the covariance between
entries Kkl and Kmn is (Ckl + Cmn)/4. Normalization by N in
the argument of the exponential ensures that the strength of
the correlation scales with the size of the matrix.

c. Cross-correlated block matrix (CB). Again, uncorrelated
normal (UC) matrices B are sampled. Then the entries Bkl

where blower � k � bupper and blower � l � bupper are replaced
by a correlated normal structure as defined above, forming a
block on the diagonal.

d. Shuffled, cross-correlated block matrix (SB). Matrices
are sampled according to CB. Then, the rows are permuted
randomly while the columns remain untouched.

e. Doubly shuffled, cross-correlated block matrix (DB).
Matrices are sampled according to CB. Then the rows and
columns are permuted randomly.

C. Random graphs

We compare the adjacency matrices of six well-known
network models with SAS. For all graphs, we derive the
parameters such that the mean total number of connections Nc

in the graph is conserved. Table II summarizes the numerical
values chosen for the corresponding model parameters.

a. Erdős-Rényi (ER). In this network model [44], every
connection has the same probability of being realized: p = Nc

Ne
,

where Ne is the total number of possible connections in the
graph. Note that this network model maximizes the entropy
under the constraint that the mean number of connections is
fixed [45].

b. Directed configuration model (DCM). In a directed
configuration model [46], a two-step probabilistic process is
applied. First, random indegrees and outdegrees are drawn
for each node such that the total number of connections
across nodes is preserved (we fix these numbers for all
graph instances). Second, connections are established by ran-
domly matching each outgoing connection with an incoming

TABLE II. Parameters of random graphs: Erdős-Rényi (ER), di-
rected configuration model (DCM), one cluster (OC), two clusters
(TC), Watts-Strogatz (WS), and Barabási-Albert (BA).

Param. Model(s) Meaning Value

Nn All Number of nodes 300
Ne All Number of possible connections 90 000
Nc All Mean number of connections 9000
r OC Relative increase of p in cluster 10
blower OC Cluster index 50
bupper OC Cluster index 100
bmid TC Index between clusters 90
pWS WS Reconnection probability 0.3

connection. Thus, two nodes can have more than one connec-
tion, and the resulting adjacency matrix is not strictly binary.

c. One-cluster Erdős-Rényi (OC). Based on an Erdős-Rényi
(ER) graph, we introduce a single cluster by increasing p
between a certain subset of nodes of the network, while uni-
formly decreasing p for all other connections such that Nc is
conserved. The relative increase of p is denoted by r, and
the location of the cluster on the diagonal is defined by the
bounding indices blower and bupper.

d. Two-cluster Erdős-Rényi (TC). For the two-cluster ER
network, we create two nonoverlapping clusters on the diago-
nal using the same method as in the OC model. The nodes that
form the clusters are chosen such that there is maximal overlap
with the single cluster of the OC model: the first cluster starts
at the same index blower and extends up to index bmid, and the
second cluster starts at index bmid + 1 and extends up to index
bupper.

e. Watts-Strogatz (WS). We create a small-world network
following [47]. Here Nn nodes initially form a ring, where
each node is connected to k = Nc

Ne
(Nn − 1) of its nearest neigh-

bors. Afterwards, all connections are uniformly redistributed
with probability pW S . Note that this model is undirected.

f. Barabási-Albert (BA). As an example of a scale-free
network, we create Barabási-Albert networks as introduced in
[48]. Here, from an initial star graph with m = Nc

Ne
(Nn − 1)/2

nodes, new nodes are added subsequently until the desired
number of nodes Nn is reached. Each added node is connected
to m existing nodes, where the probability of each existing
node being selected for a new connection is proportional to
the number of connections it already has. Note that this model
is undirected.

D. Brain data

We apply SAS to compare nonsquare matrices of brain ac-
tivity in response to visual stimuli. We use an openly available
data set, which has an extensive description of the task and
recording apparatus [49]. In the experiments, the activity of
neurons in the primary visual cortex (V1) of one macaque
monkey (Macaca mulatta) was recorded using several extra-
cellular electrode arrays (Utah arrays, 8 × 8 electrodes). The
quality of the signals was assessed based on the signal-to-
noise ratio and channel impedance. For details of the data
recording and processing we refer to [49]. Here we focus
on a single array (ID = 11) during a receptive field mapping
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task. In this task, for each trial the macaque had to fixate its
gaze to the center of the screen for 200 ms. Subsequently,
one bright bar moved across the screen for 1000 ms in one
of four directions: rightward (R), leftward (L), upward (U),
or downward (D). The different task modalities are in the
following referred to as trial types. For each trial type, there
are N = 120 repetitions.

The activity time series recorded from the electrodes was
processed to obtain the multi-unit activity envelope (MUAe)
with a sampling rate of 1 kHz, a commonly used signal as
a proxy for neuronal firing rates [50]; see [51] for specific
details of the processing. We align the trials to the peak re-
sponse, defined as the maximum response from the average
MUAe across electrodes, and cut data in a window ±200 ms
around the alignment trigger. This yields one 64 × 400 matrix
per trial: 64 electrodes during 400 ms at 1 kHz; see examples
in Fig. 7(b). We then group the matrices by trial type for
comparison by SAS.

E. Degenerate matrices

To assess SAS in the presence of degenerate singular val-
ues we construct matrices with various levels of degeneracy
from random matrices and random graphs. Given a matrix
M = U�V T , we introduce a degeneracy parameter d forcing

σ i = · · · = σ i+d = 1

d

i+d∑
j=i

σ j (14)

and define the degenerate matrix as

Md = U�dV T , (15)

where in �d the corresponding singular values are replaced
by their empirical mean. We distinguish three special cases of
starting index i such that either the highest (first), lowest (last),
or central singular value are first made degenerate, referred to
as H, L, and C degenerate, respectively. In the C-degenerate
case, i is adjusted such that the central singular value lies in the
center of the interval [i, i + d]. Finally, we denote the relative
degeneracy of an N × N matrix as D = d/N .

III. RESULTS

We present a measure for assessing the structural similarity
between two arbitrary, real m × n matrices Ma, Mb named
singular angle similarity (SAS). The measure is based on
singular value decomposition (SVD), which introduces the
left and right singular vectors with corresponding singular
values [Eq. (1)]. SAS exhibits the following properties:

(1) SAS attains values between 0 and 1 where higher
values imply greater similarity.

(2) SAS is invariant under actions of identical orthogonal
maps from the left or the right on the compared matrices; this
includes the consistent permutation of rows and columns as a
special case (Sec. S1.2 [37]).

(3) SAS is invariant under transposition of both matrices
(Sec. S1.2 [37]).

(4) SAS is invariant under scaling with a positive factor; in
particular, SAS = 1 for Mb = c1Ma, c1 ∈ R+ (Sec. S1.3 [37]).

FIG. 2. Geometric interpretation of SAS. Matrices Ma (red) and
Mb (blue) as in Fig. 1. The eigenvectors of MiMT

i and MT
i Mi (same

colors) scaled by the square root of their eigenvalues span the main
axes of ellipsoids. These square matrices capture the correlation
structure of Mi along the horizontal and vertical axis, respectively
(double-headed colored arrows). SAS compares the angles between
the corresponding ellipsoids (dashed colored arrows).

(5) SAS is zero if the two compared matrices are equal
up to a negative factor: SAS = 0 for Mb = c2Ma, c2 ∈ R−
(Sec. S1.3 [37]).

(6) If w(x, y) = √
xy, SAS is invariant under isotropic

scaling [6]
Thus, SAS predominantly highlights structural differences

between the matrices. The derivation of this measure is pre-
sented in Sec. II A.

A. Geometric interpretation of SAS

Singular angle similarity has a geometric interpretation.
The left and right singular vectors of Mi (i ∈ {a, b}) are the
respective eigenvectors of the square matrices MiMT

i and
MT

i Mi. Further, MiMT
i and MT

i Mi have the same eigenvalues
(the squared singular values of Mi). Consider for each of these
symmetric positive-definite matrices a hyperellipsoid spanned
by the respective eigenvectors scaled by their eigenvalues
(Fig. 2).

The hyperellipsoid collapses in most dimensions as matri-
ces Mi typically have only a small number of large singular
values (cf. [52]). Dimensions associated with the largest sin-
gular values dominate its shape, and the angle between the
corresponding left and right singular vectors of the matrices
Ma and Mb are of main relevance for SAS. Thus, a high
SAS indicates that the hyperellipsoids are aligned, whereas
a low SAS indicates misalignment or different shapes. If two
matrices share two-dimensional structural features, their hy-
perellipsoids will be similarly shaped and point into similar
directions, producing a high SAS. MiMT

i and MT
i Mi are the

correlation matrices up to a normalization by the number of
rows and columns, respectively, and the subtraction of the
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(e1) (e2)

FIG. 3. Comparison of SAS with standard measures. [(a1)–(e1)]
Single instances of the different random matrix classes. For visibil-
ity, negative values are shown as white. [(a2)–(e2)] Histograms of
SAS, cosine similarity, and the Frobenius norm between instances
of the random matrix classes (n = 100, all pairs compared). Filled
distributions indicate self-similarities (self-distances), nonfilled ones
indicate cross-similarities (cross-distances). Legends show effect
sizes θ for the comparison between distributions.

mean. Therefore, SAS takes into account the correlation struc-
ture along both axes of the matrices. This distinguishes the
measure from common methods such as cosine similarity and
the Frobenius norm.

B. Comparison with standard measures for random matrices

By its very definition, SAS captures two-dimensional
structures that are invisible to traditional measures of matrix
similarity. Figure 3 shows the ability of different measures to
discriminate between classes of random matrices with such
structure.

Concretely, we compare SAS with cosine similarity,

〈Ma, Mb〉F = tr
(
MaMT

b

)
, (16)

and Frobenius distance,

||Ma − Mb||F =
√

〈Ma − Mb, Ma − Mb〉F , (17)

where we normalize the matrices such that

||Ma||F = ||Mb||F = 1.

Figures 3(a1)–3(e1) show single instances of the five matrix
classes defined in Sec. II B. We first calculate the self-
similarity, the pairwise similarity between instances of the
same random matrix class (excluding self-comparisons), and
the cross-similarity, which refers to the similarity between
instances of different classes [Figs. 3(a2)–3(e2)]. We anal-
ogously define self- and cross-distance for the Frobenius
distance. Subsequently, we investigate whether the different
measures distinguish the random matrix classes from each
other based on realizations of their particular structures. Fun-
damentally, this works only if the structure quantified by a
measure is more similar between instances of the same class
than across classes. Thus, for SAS and cosine similarity, the
self-similarity must be meaningfully greater than the cross-
similarities. Conversely, since the Frobenius norm measures
a distance rather than a similarity, the self-distance must be
smaller than the cross-distance. We call a difference meaning-
ful if the effect size θ between pairs of distributions is greater
than one. Assuming an underlying Gaussian model for the
distributions, we employ the definition

θ = μself − μcross√
σ 2

self+σ 2
cross

2

(18)

of the “Cohen’s D” effect size [53] underlying the com-
mon Student’s and Welch’s t statistics [54,55], where μ

and σ are the mean and standard deviation of the self-
and cross-similarity distributions. Thus, two distributions are
meaningfully different if the distance of their means is greater
than the quadratic mean of their standard deviations.

Figure 3(a2) shows that UC matrices cannot be distin-
guished from the other matrix classes by any measure. This
is expected: since the entries are independent, there is no de-
tectable structure. In particular, this means that no structure is
shared between different UC matrices or between UC matrices
and matrices of other classes. Geometrically, this corresponds
to ellipsoids that are oriented in random directions for each
instance.

By definition, CC matrices exhibit shared fluctuations that
induce similarity between different instances of the matrices.
However, cosine similarity and the Frobenius norm fail to
identify the common correlation structure [Fig. 3(b2)]. Only
SAS separates the self- and cross-similarity meaningfully and
can thereby distinguish this matrix class from the others.

A similar conclusion holds true for CB matrices, where the
correlated structure is embedded into an otherwise uncorre-
lated matrix [Fig. 3(c2)]: again, only SAS separates the self-
and cross-similarities meaningfully.

Next, we consider SB matrices. By construction, these are
CB matrices with permuted rows. Between SB matrices, the
CB correlation structure along the horizontal axis (quantified
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by MMT ) is destroyed while the correlation structure along
the vertical axis (quantified by MT M) stays the same. Since
SAS takes into account both, it detects similarity between SB
and CB matrices despite the permutation of the rows. This
leads to a higher cross-similarity between CB and SB matrices
than between CB and the other matrix classes [Fig. 3(c2)].
Since the block structure exhibited by CB matrices can be
viewed as one specific permutation of the rows, the self-
similarity of SB and the cross-similarity between SB and CB
follow the same distribution [Fig. 3(d2)] while SB matrices
are separable from UC and CC matrices. The cosine similarity
and the Frobenius norm fail to separate SB matrices from the
other classes. The choice of the axis along which we permute
is arbitrary; the results are identical if we permute columns
instead of rows.

Finally, we turn to DB matrices [Fig. 3(e2)]. Here, starting
from CB matrices, both the columns and rows are permuted.
Consequently, between DB matrices a correlation structure is
neither retained along the horizontal nor along the vertical
axis. Neither SAS nor the other measures can detect similarity
between DB matrices in comparison with DB matrices and
matrices of the other classes.

Why are these examples relevant? They show that SAS
captures certain two-dimensional correlation structures be-
tween instances. In contrast, the traditional measures cannot
identify them. Additionally, SAS retains similarity even af-
ter permutation along one axis—including shifts as a special
case. This is relevant in practical applications, for example in
the analysis of highly parallel time series: even if the time
series are not aligned, SAS exposes structural similarities.
However, if both rows and columns are randomly permuted
SAS fails to identify similarity. This is expected since in this
case there is no two-dimensional correlation structure between
instances left for SAS to identify.

In addition to the metrics described above, we also test
SAS against linear CKA and the angular Procrustes similarity
(Sec. S1.4 [37]). While for these measures CC and CB ma-
trices can be better separated, this does not generalize to SB
matrices. Moreover, the separations suffer from spurious high
similarity for UC matrices, violating the expected hierarchy
of similarity in multiple cases (Sec. S1.4 [37]).

C. Characterization

1. Scale dependence and robustness

To assess the dependence of SAS on matrix size, we
calculate the self-similarity for increasing dimensionality N
and observe a decreasing SAS for all random matrix classes
[Fig. 4(a)]. Since the probability distribution for an angle
between two random vectors increasingly centers around
π/2 with increasing dimensionality [56], the resulting SAS
between UC matrices decreases with increasing matrix di-
mensionality. This intuition generalizes to the other matrix
classes. Hence, a quantitative comparison of SAS values is
only reasonable for matrices of the same dimensionality.

Next, we investigate how SAS decreases between two
identical copies of a matrix when gradually perturbing one
of them. We analytically study SAS between a matrix M
and a perturbed version of itself, M + √

εW , using Rayleigh-
Schrödinger perturbation theory [57]. Here

√
ε is chosen

(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 4. Characterization of SAS. In all panels, lines indicate the
mean and shadings indicate the standard deviation over 10 realiza-
tions. In cases of constant matrix size, N = 300. Panels (a)–(c) and
(e)–(g) share the same legends. (a) Self-similarity for varying dimen-
sionality N . (b) SAS between identical matrix instances for varying
variance of an additive perturbation σ 2

pert = f σ 2. (c) SAS between
matrices when increasing the degree of putative structural similarity
quantified by λ. (d) SAS between CB matrices where the correlated
block is shifted either vertically or diagonally for one matrix. (e)
Self-similarity for varying network size N . (f) SAS between identical
network model instances where the number of individual connections
that are changed is gradually increased. (g) SAS between network
model instances when increasing the degree of putative structural
similarity quantified by λ. (h) SAS between OC matrices where the
cluster is shifted either vertically or diagonally for one matrix.

as a perturbation parameter since this ensures a linear scal-
ing of the variance of the perturbation matrix with ε. We
find that, for a large class of perturbations, SAS follows
1 − arccos[1 − O(ε)]/π

2 (see Sec. S1.5 [37]). This implies
that small differences are identified as dissimilarities ar-
bitrarily fast ( d arccos(1−x)

dx → ∞ for x → 0). Thus, SAS is
sensitive to small differences in the compared matrices. For an
empirical analysis, we study the sensitivity of SAS under per-
turbations of additive noise of the form M̃ = M + W where
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W is a matrix of the UC class with zero mean and variance
σ 2

pert = f σ 2, 0 � f � 1. As predicted analytically, Fig. 4(b)
shows a rapid fall-off for small perturbations that continues as
a gradual decrease for each of the considered classes.

Next, we numerically study SAS while adding structure
to a noise matrix. In particular, we calculate SAS between a
matrix M and the convex combination of the same matrix with
a UC matrix N :

(1 − λ)N + λM for λ ∈ [0, 1]. (19)

Figure 4(c) shows that SAS is well behaved also for small
values of λ: it increases smoothly when adding structure for
all matrix classes.

Finally, starting from CB matrices, we investigate the
change of cross-similarity when shifting the correlated block
of one matrix either vertically or diagonally by s indices
[Fig. 4(d)]. In both cases, SAS gradually decreases and
saturates once the blocks are nonoverlapping (s = 80). Impor-
tantly, SAS saturates to a value higher than the mean CB-UC
cross-similarity for the vertical shift, whereas it saturates to
a value lower than that for the diagonal shift. Thus, SAS
identifies shared structure when it is shifted vertically, but
not when it is shifted diagonally. While potentially counter-
intuitive, this can be understood when considering the case
of DB matrices [Fig. 3(e2)]: the diagonal shift is a specific
example of a permutation in both directions, and once the
blocks are nonoverlapping, there is no correlation structure
between the two matrices that SAS can identify. We con-
clude that SAS cannot detect similarity between matrices if
a sufficient amount of the relevant structure is moved across
instances.

We perform an analogous analysis for network adja-
cency matrices of six different graph models: Erdős-Rényi
(ER), directed configuration model (DCM), one cluster (OC),
two clusters (TC), Watts-Strogatz (WS), and Barabási-Albert
(BA), as defined in Sec. II C. The results are qualitatively sim-
ilar to those obtained for the four classes of random matrices:
SAS decreases with increasing network size N [Fig. 4(e)],
SAS rapidly decreases for small perturbations [Fig. 4(f)], SAS
gradually increases when adding structure [Fig. 4(g)], and
SAS decreases when shifting either vertically or diagonally
[Fig. 4(h)]. A notable exception is that for WS networks,
SAS does not decrease when increasing N . In this network
model the number of nearest neighbors each node is connected
to scales with N . Therefore the correlation in the adjacency
matrix also scales with N , rendering the similarity measured
by SAS independent of N . For investigating the effect of a
perturbation on identical network matrices [Fig. 4(g)], we
define the gradual change such that an increasing fraction g
of matrix elements is altered. Specifically, for each of the
gN2 randomly selected matrix elements, existing connections
are removed and missing connections are established with a
multiplicity of one. For the binary adjacency matrices this cor-
responds to bit flipping the corresponding entries. In the case
of adding structure [Fig. 4(g)], we choose the ER adjacency
matrices as the noise component N . Note that while the sum
over all entries stay the same on average under the convex
combination, the entries are not confined to natural numbers
anymore.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. SAS for degenerate matrices. In all panels, lines indicate
the mean, the shading the standard deviation over 10 realizations.
Solid colored lines show self-similarity between CB (OC) matrices
with identical parameters (the same as in Tables I and II). Dashed
colored lines show cross-similarity between two CB (OC) matri-
ces where the second matrix exhibits a block (cluster) shifted to
blower = 210 and bupper = 290 (blower = 200 and bupper = 250). Gray
lines indicate effect size θ (right axes). In all panels, the fraction D of
degenerate singular values is varied. N = 300. (a), (d) C-degenerate
matrices, where the singular values are made degenerate starting
from the center singular value. (b), (e) L-degenerate matrices, where
the singular values are made degenerate starting from the lowest
singular value. (c), (f) H-degenerate matrices, where the singular
values are made degenerate starting from the highest singular value.

2. Degenerate singular values

We evaluate the discriminability of matrix classes with
SAS in the presence of degenerate singular values (Fig. 5).
Specifically, we quantify how well CB matrices with nonover-
lapping blocks and OC matrices with nonoverlapping clusters
can be discriminated when making the singular value spec-
trum degenerate. We introduce degeneracy gradually as
described in Sec. II E.

In the case of CB matrices, for which the singular value
spectrum exhibits a smooth decay (not shown), SAS is able
to distinguish matrices with blocks at different positions even
for high degeneracy (θ > 1 up to D ≈ 0.85) as shown in
Figs. 5(a)–5(c). Here the effect size initially increases with
increasing H-degeneracy even though the destroyed structure
corresponds to the singular angles with the highest weighting
in the calculation of SAS.

In contrast, the spectrum of singular values of OC ma-
trices is dominated by one singular value (not shown),
which is of highest relevance for SAS. When introducing
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(a1) (a2)

(c2) (d2)

(e2) (f2)

(b2)(b1)

(c1) (d1)

(e1) (f1)

FIG. 6. Self- and cross-similarity of different network models. [(a1)–(f1)] Single instances of the different network models. Colored matrix
elements indicate a connection between nodes. For the DCM model, connections with a multiplicity higher than one are shown with the same
color intensity as single connections. [(a2)–(f2)] Histograms of SAS between instances of the network models (n = 100, all pairs compared).
Filled distributions indicates self-similarities, nonfilled ones indicate cross-similarities. Legends show effect sizes θ for the comparison between
self- and cross-similarities.

degeneracy from the center [Fig. 5(d)] or starting from the
smallest singular value [Fig. 5(e)], θ remains roughly con-
stant until d = 299, d = 300, respectively. At precisely these
values, the largest singular value becomes degenerate and θ

drops below 1. For the left-degenerate case [Fig. 5(f)], some
discriminability is retained for small values of d even though
the largest singular value is made degenerate already at d = 2.

This implies that, in a certain range depending on the use
case, SAS is robust against the perturbation of large outliers
in the distribution of singular values. Moreover, these cases
suggest that SAS is not principally limited by the presence of
repeated singular values.

D. Categorization of random graphs

We apply SAS to the adjacency matrices that describe the
network architecture in various directed and undirected prob-
abilistic graphs as defined in Sec. II C. Example adjacency
matrices of network instances are shown in Figs. 6(a1)–6(f1).
Since these matrices Mi only contain non-negative entries,
so do MiMT

i and MT
i Mi. The Perron-Frobenius theorem [58]

guarantees that the left and right singular vectors correspond-
ing to the largest singular value have only non-negative or only
nonpositive entries (cf. Sec. S1.6 [37]). As such, these singular
vectors are confined to a single orthant of the N-dimensional

vector space. Even if these vectors are random, they cannot
be assumed to be orthogonal. Indeed, for the ER network,
for which all other singular vectors are of random orienta-
tion, the first left and right singular vectors scatter around
the vector (1/

√
N, . . . , 1/

√
N )T across instances. Therefore,

the first singular vectors necessarily enclose smaller angles
across models compared to the other pairs of singular vectors.
Consequently, information regarding the difference between
models—which is encoded most strongly in the first singular
vectors—is reduced. Thus, it is a priori not clear whether SAS
reliably distinguishes between network models.

a. Self-similarity of network models. First, we examine
the self-similarity of the network models [Figs. 6(a2)–6(f2)].
We find that ER networks exhibit the lowest self-similarity
compared to all other network models. This is consistent with
the ER network model maximizing the entropy under the
constraint that the average number of connections is constant:
ER networks have the least structure that is shared across
instances. This can be also understood from their definition
inasmuch as each connection is realized independently with
the same probability. In this sense, ER networks are analo-
gous to the UC random matrices. The other network models
instead feature structural properties that are consistent across
instances, stemming from shared variations in the connection
probability. This is most obvious for the OC and TC network
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(a) (b) (c)

FIG. 7. Comparing nonsquare matrices of brain activity with SAS. (a) Schematic diagram of the neuroscience experiment. (b) Single-trial
brain activity at identical recording electrodes (64 electrodes, vertical) for each type as example (trial types distinguished by color). Larger
values of matrix entries indicate higher MUAe activity (shading in color bar, arbitrary units). (c) Histograms of SAS between all (n = 120)
individual trials. Filled distributions [color code as in (b)] indicate self-similarities, nonfilled ones indicate cross-similarities. Legends show
effect sizes θ for the comparison between self- and cross-similarities.

models (analogous to the CB random matrix class), where
certain subgroups of nodes have a higher connection probabil-
ity p among themselves compared to the rest of the network.
Further, we expect WS networks to have reliably detectable
structure, i.e., high self-similarity, as every node has dominant
local connectivity. SAS confirms these expectations, as seen
when comparing the respective self-similarity distributions in
Figs. 6(a2)–6(f2).

b. Self-similarity vs cross-similarity. Second, we study
whether SAS can differentiate between the particular struc-
tures present in the adjacency matrices of the network models.
Using the effect size defined in Eq. (18), Figs. 6(a2)–6(f2)
confirm that the self-similarity is meaningfully higher than the
cross-similarity except for special cases.

First, ER networks do not exhibit θ > 1 for all cases. As
for the UC matrices, this is expected as all matrix elements
are uncorrelated. As a matter of fact, the cross-similarity
with WS networks yields even higher SAS values than the
self-similarity of ER. Why is this the case? The first left and
right singular vectors of both ER and WS networks scatter
around (1/

√
N, . . . , 1/

√
N )T . The deviation between singular

vectors of ER networks, however, is larger than that between
those of WS networks across instances. This leads to a better
alignment, i.e., a higher angular similarity, of the singular
vectors, resulting in a higher SAS between ER and WS as
compared to ER and ER networks.

Second, we note that SAS distinguishes between the OC
and TC networks despite overlapping clusters. Figures 6(c2)
and 6(d2) show that the respective self-similarities are closer
to the cross-similarity of OC and TC than to the other cross-
similarities. Thus, SAS identifies the clustered networks to be
more similar among each other than compared to the remain-
ing networks.

We conclude that SAS is sensitive to the structure present
in matrices, enabling it to distinguish between model classes.
The same conclusion also holds true for nonsquare matrices
of network connectivity where a full graph is instantiated, but
only subsamples are analyzed with SAS (see Sec. S1.7 [37]).

E. Separation of brain states

We investigate brain activity originating from different
experimental trials as a use case for SAS with nonsquare
matrices of experimental data. The publicly available data set
from [49] is based on extracellular recordings from the visual
cortex of a macaque monkey. In the experiment, bright bars
move across a screen in one of four directions [rightward (R),
leftward (L), upward (U) or downward (D)], evoking a strong
neural response [Fig. 7(a)]. The data consists of the multi-unit
activity envelope (see Sec. II) yielding one 64 × 400 matrix
per trial; sample matrices are shown in Fig. 7(b).

Neurons in the primary visual cortex (V1) respond accord-
ing to their feature selectivity, primarily stimulus location [59]
and orientation [60], but also movement direction [61]. Be-
yond these well-known response properties of single neurons,
the population activity—represented as a two-dimensional
spatiotemporal matrix—may reveal additional information
about brain dynamics. By applying SAS, we investigate
shared variability across both time and neurons.

In the data set at hand, SAS reveals that neural activity of
all trial types exhibits higher self- than cross-similarity with
effect sizes θ > 1 [Fig. 7(c)]. Trials with stimulus movement
along the same axis (L-R or U-D) are more similar to each
other than to ones with orthogonal stimulus movement. This is
a desirable outcome of SAS: in L-R (resp. U-D) trials, neurons
that share an orientation tuning aligned with the stimulus are
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expected to have a higher probability of a strong response.
The consideration implies that the shared orientation of the
bar stimulus in L and R (resp. U and D) trials leads to more
similar responses in these trial pairs.

In this use case, SAS outperforms common measures of
matrix similarity. Both cosine similarity and the Frobenius
norm can distinguish trial types—albeit with lower |θ | than
SAS—but fail to identify the shared variability along the
same axis (L-R or U-D). Symmetric CKA and the angular
Procrustes similarity fail to reliable distinguish trials in most
cases (Fig. S3 [37]). Therefore, the use case highlights the
ability of SAS to identify the two-dimensional structure of
matrices in experimental data.

As an essentially linear measure operating directly on the
data, SAS might suffer in the presence of strong nonstation-
arities and highly nonlinear trajectories in the phase spaces.
Ostrow et al. [62] suggest to overcome this problem by rep-
resenting the nonlinear system as a high-dimensional linear
one using dynamic mode decomposition [63]. In a second
step, they then assess the similarities of the linear representa-
tions via a Procrustes-style minimization problem using base
changes instead of actions of orthogonal matrices. Guilhot
et al. [64] show that the method can identify the emergence
of representations during learning in recurrent networks —a
task at which static measures like CKA or a Procrustes-based
approach fail. It will be interesting to see how the assessment
of similarity changes if SAS is used instead of the similar-
ity measure employed by the authors in [62] for comparing
the linear high-dimensional representations of the dynamical
systems.

IV. DISCUSSION

Here we present singular angle similarity (SAS): a method
for comparing the similarity of real matrices of identical shape
based on singular value decomposition. SAS is invariant under
transposition and consistent relabeling of coordinates, and
reliably detects structural similarities in the compared ma-
trices. It generalizes the angular similarity (Sec. S1.8 [37])
for vectors and the eigenangle score for symmetric positive
definite matrices by Gutzen et al. [33]. For a particular choice
of weight function and vector similarity measure, SAS and the
eigenangle score are equivalent for positive-definite symmet-
ric matrices. Gutzen et al. [33] introduce an extension of the
eigenangle score for asymmetric adjacency matrices of certain
network types by choosing a specific analytical mapping of
the complex-valued eigenvalues and vectors: shift the real part
of the eigenvalues by the spectral radius of the matrix, and
calculate the Euclidean angle between the complex eigenvec-
tors [65]. However, this choice is not unique—other mappings
are also possible. In addition, the resulting similarity measure
is not invariant under joint transposition of the compared
matrices. In SAS, the singular vectors are real-valued, the
singular values are non-negative, and the measure is trans-
position invariant. Thereby, it circumvents these limitations
and admits a more natural generalization to nonsymmetric
and nonsquare matrices. We here choose angular similarity as
the vector similarity measure, and a specific weight function
for the resulting angles [Eq. (8)]. Other choices are possible,
such as cosine similarity for the former, making SAS easily

adaptable. By definition, SAS can only be applied to matrices
with identical shape. A possible extension that allows one
to apply SAS to matrices of different shape is sketched in
Sec. II A.

a. Interpretability. Since SAS is sensitive to matrix size
(Sec. III C) it can only be interpreted in relative terms. A
quantitative reference can be obtained by choosing a use-case-
specific null model (e.g., Erdős-Rényi for network models)
for which the corresponding distribution of SAS can be deter-
mined numerically. Similarity as indicated by SAS can then
be interpreted in terms of this baseline. Since realizations of
single matrices exhibit fluctuations, evaluating SAS from a
single observation may be misleading. Instead, one should
consider the SAS distribution of an ensemble of realizations
when possible. Such a distribution can then be interpreted
with respect to the reference distribution obtained with the
null model by means of an effect size [Eq. (18)] or a statistical
two-sample test of choice. Given the broad range of potential
use cases, analytical descriptions of a null distribution and
associated calculations of p values as in [33] seem difficult or
even impossible for many cases, and we suggest an empirical
approach based on explicit choices of null models as described
above.

However, we highlight that an empirical approach to a
statistical assessment of methods based on the analyses of
matrices is not always required. Indeed, some methods for
which key quantities are related to singular values or eigen-
values allow for analytical descriptions of statistical tests or
other assessments (e.g., [66–70]). Even though the overlap
between eigenvectors has also been investigated analytically
in special cases [71], focusing on singular angles makes a fully
mathematical derivation of significance tests in many cases
impossible to the best of our knowledge. We hence advocate
for the empirical approach outlined above.

b. Limitations. While SAS generally highlights structural
features in matrices stemming from their correlations along
rows and columns, it also suffers from shortcomings in certain
situations. In the presence of sufficiently strong noise, the or-
der of singular values may change even if two matrices encode
the same underlying information. This leads to a different
pairing of singular vectors when computing SAS, resulting
in a low score even though the matrices result from a com-
mon construction process. This can be partially be addressed
by rounding singular values, thereby potentially introducing
degeneracy. This is treated in SAS by deriving singular angles
from the canonical angles between the degenerate subspaces.
If the degenerate subspaces are large, SAS may lose its sensi-
tivity: in the extreme case of fully degenerate matrices where
the degenerate subspace is the full space, no discrimination is
possible using SAS. Additionally, if the matrices under con-
sideration have few strongly dominating singular values, and
these are degenerate, the discriminability using SAS may suf-
fer. Further, SAS cannot detect similarity between matrices if
rows and columns are inconsistently permuted. This includes
shifts along both axes as a special case. Hence, SAS cannot be
used when translation invariance is desired, for instance, in the
detection of objects in images independent of their location.

c. Applications. Beyond network connectivity or brain ac-
tivity matrices, potential applications include the analysis of
nonsymmetric matrices obtained with measures for the flow
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of information. Examples of such measures include, but are
not limited to, Granger causality [72], or transfer entropy [73]
(also see [74] for a machine learning inspired view on the
topic). Additionally, SAS can help assess similarity in more
classical settings, e.g., when studying cross-covariances.

In conclusion, SAS can be used to analyze the structural
similarity of any real-valued data that can be represented in
matrix form. Such data can come from any field of research.
Coupled with domain knowledge, SAS may reveal hidden
structures in the data, supporting existing methodologies and
enabling new insights.
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