modular, sensor electronics, reconfiguration, ruggedised, MPSoC, on-board processing, data compression

Modular and customisable processing system in a

storage and data processing in a single platform

Reconfigurable applications (in-system reconfigurable)

All types of instruments where small size, light weight and

but also ROV (remotely operated underwater vehicle) or

First use will be as an on-board computer, instrument

control and mass storage device in an upcoming balloon

than 12 GFlops/s on the ARM A53 [4]

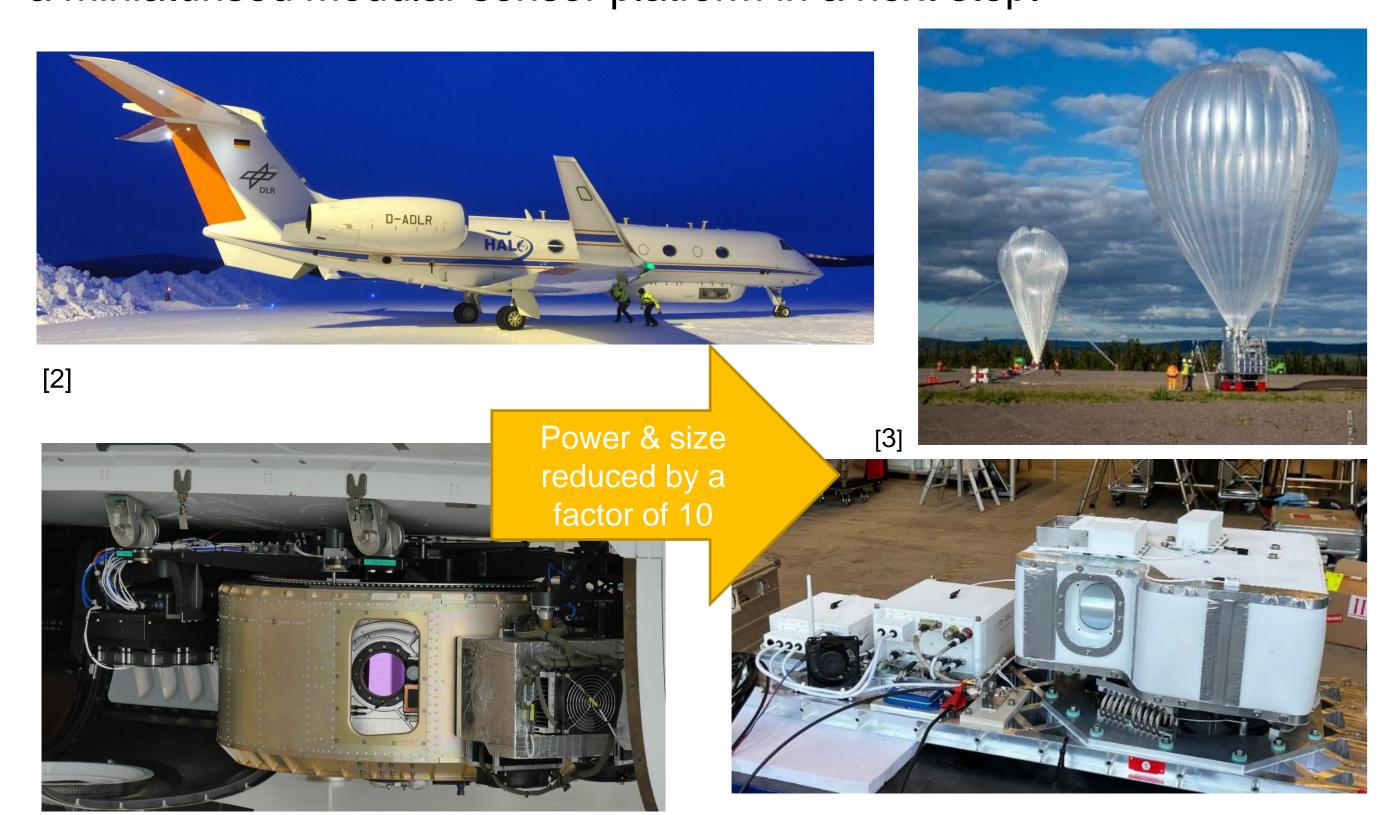
low power consumption are important.

Weather and stratospheric balloons

> Multiprocessor module, with GPU and FPGA with more

> Power consumption in a realistic demo application is **less**

Integrates on-board computer, instrument control, mass


Next generation modular processing system for miniaturized remote sensing instruments

Schardt Georg¹, Neubert Tom¹, Rongen Heinz¹, Zimmermann Egon¹, Gulde Thomas³, Kretschmer Erik³, Maucher Guido³, Ungermann Jörn², Preusse Peter², Riese Martin², and Natour Ghaleb^{1,4} ¹Institute of Technology and Engineering (ITE), Forschungszentrum Jülich GmbH, Germany, ²Institute of Climate and Energy Systems (ICE-4), Forschungszentrum Jülich GmbH, Jülich, Germany, ³Institute of Meteorology and Climate Research Atmospheric Trace Gases and Remote Sensing (IMKASF), Karlsruhe, Germany, ⁴Faculty of Mechanical Engineering (ISF), RWTH Aachen University, Germany

MOTIVATION

The study of climate-relevant processes in the atmosphere using airborne platforms is an important contribution to understanding our environment. The need for ever longer measurement times and higher resolution requires a new generation of data acquisition and instrument control.

Based on the airborne instrument GLORIA[1], a first prototype of a smaller balloon version has been developed, which will be extended to a miniaturised modular sensor platform in a next step.

CHALLENGES

To meet the requirements of future instruments, a number of conditions must be met:

- Reduce the volume, mass and power consumption of the entire data acquisition and instrument control hardware
- Modular and adaptable to a wide range of different instruments
- Powerful to enable on-board processing and data compression
- System reliability with hardware & software redundancy

^{1]} Instrument concept and preliminary performance analysis of GLORIA, Felix Friedl-Vallon et al., 2006

[2] Picture of HALO with GLORIA-AB during Stratoclim Testcampain 2017, by Tom Neubert

[3] Picture of CNES Carmen Gondola with GLITE during Transat Campain 2024, by Tom Neubert

Rugged design for harsh environments (temperature, pressure)

DESIGN & IMPLEMENTATION

System-on-Module (SoM) with AMD Zynq Ultrascale+

- Processing System (PS) with Quad-Core ARM Cortex A53 (1.5 GHz) and RT Dual-Core ARM Cortex R5F (600 MHz), Mali500 based GPU, 4 GB DDR4 Ram,
- Reprogrammable Logic (PL) with over 200 GPIO, 16 high speed transceivers, DSP slices
- M2 interfaces for storage and Wifi / BLE (16 GB M2 SSD available)
- PCIe, UART, I2C and many more interfaces
- QSPI and eMMC Flash memory

High-speed application interface

- Two MGTs from PL and PS each up to 16 GBit/s (PCIe, SATA, HDMI, etc.)
- 10 DP signals / 20 GPIO signals for additional sensors or housekeeping
- UART, I2C, 1 GB Ethernet
- Mass storage card

- monitoring, System watchdog
- Image from secured SD-Card)

10 G Fiber Ethernet

Fast connection for

- storage device
- Readout high-speed sensors
- Communication

Supervisor / Watchdog

- Power sequencing and
- Boot selection (golden
- Radiation tolerant

- & control

CONTACT

FEATURES

than 15 W.

> 10 Gb Ethernet

APPLICATIONS

Satellites

campaign.

10x10 cm footprint

Universal sensor interfaces

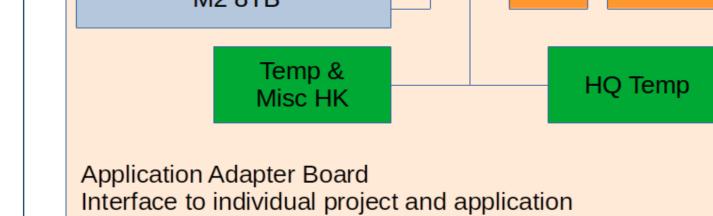
airborne instruments

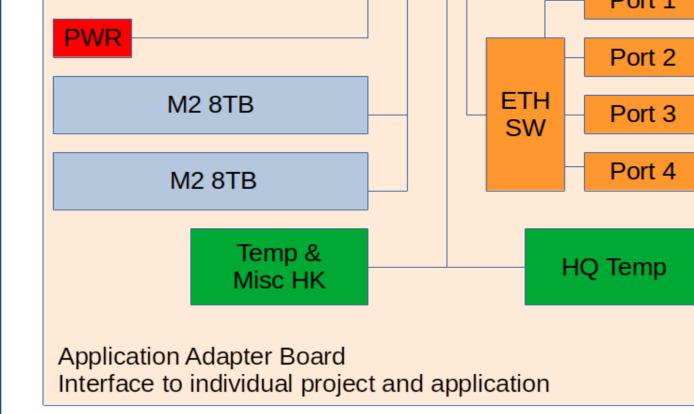
ground-penetrating radars

High-speed application interface

Georg Schardt g.schardt@fz-juelich.de

Institute of Technology and Engineering (ITE) https://www.fz-juelich.de/de/ite


Interface to application


- option available

- Download to mass

Two sensor interfaces

- Connect two individual sensors to the FPGA part of the MPSoc module, independent of the interface
- Cameras, infrared detectors, particle scanners
- UART, I2C, SPI, CameraLink, CAN, SpaceWire, etc.
- 10 differential pairs, 20 single ended GPIOs, up to 1.26 GBit/s per pin
- Dedicated I2C bus for slow control and housekeeping data
- Rugged connector with flexible high speed cable

Acquesition & Processing Un