001041804 001__ 1041804
001041804 005__ 20250610131446.0
001041804 0247_ $$2doi$$a10.1175/JHM-D-24-0017.1
001041804 0247_ $$2ISSN$$a1525-755X
001041804 0247_ $$2ISSN$$a1525-7541
001041804 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02440
001041804 0247_ $$2WOS$$aWOS:001472476700001
001041804 037__ $$aFZJ-2025-02440
001041804 082__ $$a550
001041804 1001_ $$00000-0002-2877-6447$$aSkalák, Petr$$b0$$eCorresponding author
001041804 245__ $$aThe Projected Changes in the Surface Energy Budget of the CMIP5 and EURO-CORDEX Models: Are We Heading toward Wetter Growing Seasons in Central Europe?
001041804 260__ $$aBoston, Mass.$$bAMS$$c2025
001041804 3367_ $$2DRIVER$$aarticle
001041804 3367_ $$2DataCite$$aOutput Types/Journal article
001041804 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747405522_2287
001041804 3367_ $$2BibTeX$$aARTICLE
001041804 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041804 3367_ $$00$$2EndNote$$aJournal Article
001041804 520__ $$aWe analyze the surface energy budget from four climate model ensembles and its future changes in thetwenty-first century under the RCP8.5 or shared socioeconomic pathway (SSP) 5-8.5 scenario. High-resolution Europeandomain of the Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX) regional climate models(RCMs) and their driving CMIP5 global climate models (CMIP5-D) are first tested in central Europe against observationaldatasets. Evaluation reveals the added value of RCMs in terms of spatial variability and smaller biases. CMIP5-D are af-fected by the positive bias of global irradiance that propagates into other radiation and heat fluxes. There are strong differ-ences in the projected surface energy budget components between RCMs and CMIP5-D. There is an increase in globalirradiance for most of the year in CMIP5-D and other GCM ensembles that is translated into a year-round enhancementof the absorbed solar energy and balanced by higher latent heat flux, except in summer, when the sensible heat flux risesstrongly. Together with strong warming and reduced precipitation in summer, this leads to warm, sunny, and dry conditionswith reduced evapotranspiration and higher drought stress for vegetation. In the RCMs, the reduction in global irradiancedominates, and it is translated into a round-year reduction in the net balance of longwave radiation and stronger latentheat flux. The first months of the growing season show weaker warming associated with higher evapotranspiration and pre-cipitation. In summer, precipitation drops and global irradiance and warming rise, but they fall behind the changes in theGCMs. Compared to GCMs, there are less visible signs of conditions leading to a reduction in evapotranspiration or ashortage of soil water in the RCMs in summer.
001041804 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001041804 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041804 7001_ $$0P:(DE-HGF)0$$aMeitner, Jan$$b1
001041804 7001_ $$0P:(DE-HGF)0$$aFischer, Milan$$b2
001041804 7001_ $$0P:(DE-HGF)0$$aOrság, Matěj$$b3
001041804 7001_ $$0P:(DE-Juel1)129461$$aGraf, Alexander$$b4$$ufzj
001041804 7001_ $$0P:(DE-HGF)0$$aHlavsová, Monika$$b5
001041804 7001_ $$0P:(DE-HGF)0$$aTrnka, Miroslav$$b6
001041804 773__ $$0PERI:(DE-600)2042176-X$$a10.1175/JHM-D-24-0017.1$$gVol. 26, no. 4, p. 481 - 499$$n4$$p481 - 499$$tJournal of hydrometeorology$$v26$$x1525-755X$$y2025
001041804 8564_ $$uhttps://juser.fz-juelich.de/record/1041804/files/hydr-JHM-D-24-0017.1.pdf$$yOpenAccess
001041804 909CO $$ooai:juser.fz-juelich.de:1041804$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001041804 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129461$$aForschungszentrum Jülich$$b4$$kFZJ
001041804 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001041804 9141_ $$y2025
001041804 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
001041804 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001041804 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROMETEOROL : 2022$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041804 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-28$$wger
001041804 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001041804 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001041804 920__ $$lyes
001041804 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001041804 980__ $$ajournal
001041804 980__ $$aVDB
001041804 980__ $$aUNRESTRICTED
001041804 980__ $$aI:(DE-Juel1)IBG-3-20101118
001041804 9801_ $$aFullTexts