001     1041804
005     20250610131446.0
024 7 _ |a 10.1175/JHM-D-24-0017.1
|2 doi
024 7 _ |a 1525-755X
|2 ISSN
024 7 _ |a 1525-7541
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02440
|2 datacite_doi
024 7 _ |a WOS:001472476700001
|2 WOS
037 _ _ |a FZJ-2025-02440
082 _ _ |a 550
100 1 _ |a Skalák, Petr
|0 0000-0002-2877-6447
|b 0
|e Corresponding author
245 _ _ |a The Projected Changes in the Surface Energy Budget of the CMIP5 and EURO-CORDEX Models: Are We Heading toward Wetter Growing Seasons in Central Europe?
260 _ _ |a Boston, Mass.
|c 2025
|b AMS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747405522_2287
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We analyze the surface energy budget from four climate model ensembles and its future changes in thetwenty-first century under the RCP8.5 or shared socioeconomic pathway (SSP) 5-8.5 scenario. High-resolution Europeandomain of the Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX) regional climate models(RCMs) and their driving CMIP5 global climate models (CMIP5-D) are first tested in central Europe against observationaldatasets. Evaluation reveals the added value of RCMs in terms of spatial variability and smaller biases. CMIP5-D are af-fected by the positive bias of global irradiance that propagates into other radiation and heat fluxes. There are strong differ-ences in the projected surface energy budget components between RCMs and CMIP5-D. There is an increase in globalirradiance for most of the year in CMIP5-D and other GCM ensembles that is translated into a year-round enhancementof the absorbed solar energy and balanced by higher latent heat flux, except in summer, when the sensible heat flux risesstrongly. Together with strong warming and reduced precipitation in summer, this leads to warm, sunny, and dry conditionswith reduced evapotranspiration and higher drought stress for vegetation. In the RCMs, the reduction in global irradiancedominates, and it is translated into a round-year reduction in the net balance of longwave radiation and stronger latentheat flux. The first months of the growing season show weaker warming associated with higher evapotranspiration and pre-cipitation. In summer, precipitation drops and global irradiance and warming rise, but they fall behind the changes in theGCMs. Compared to GCMs, there are less visible signs of conditions leading to a reduction in evapotranspiration or ashortage of soil water in the RCMs in summer.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Meitner, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fischer, Milan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Orság, Matěj
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 4
|u fzj
700 1 _ |a Hlavsová, Monika
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Trnka, Miroslav
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1175/JHM-D-24-0017.1
|g Vol. 26, no. 4, p. 481 - 499
|0 PERI:(DE-600)2042176-X
|n 4
|p 481 - 499
|t Journal of hydrometeorology
|v 26
|y 2025
|x 1525-755X
856 4 _ |u https://juser.fz-juelich.de/record/1041804/files/hydr-JHM-D-24-0017.1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041804
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129461
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROMETEOROL : 2022
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21