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A B S T R A C T

Differentiable quantum circuits (DQCs) are the hybrid quantum-classical alternative to Physics-
Informed Neural Networks (PINNs). The latter ones have been introduced from the machine learning
community to avoid the curse of dimensionality in mesh-based computational fluid dynamics (CFD)
solvers, and allow for seamless inclusion of information from available data. The adoption of quantum
circuits is motivated by enabling access to highly expressive feature maps, which might be key in
capturing intricate solutions to selected fluid dynamics problems. In this work, we discuss the potential
of DQCs and its recent extensions to address paradigmatic CFD use cases.

1. Introduction
Recent advances in the domain of CFD allowed for better

solutions of fluid dynamics problems and their respective
partial differential equations (PDEs). Many of CFD’s most
successful techniques use finite differences/elements/volume
methods or spectral methods to solve some form of the
Navier-Stokes equations [1]. Despite the high fidelity that
these methods can reach, their reliance on meshes or modes
exposes them to the curse of dimensionality, i.e., high
computational costs in multi-scale PDEs involving multiple
equations in 2D and 3D geometries.

Recently, PINNs have been proposed as an alternative
paradigm to solve PDEs [2]. In essence, PINNs approximate
the PDE solution with the output of a neural network (NN),
trained to minimize loss terms directly derived from the
equations. PINNs offer an edge with respect to standard
supervised learning (SL), as in principle, they do not require
any sample of the solution, be that analytical, numerical
or experimental. Thanks to their efficiency and flexibility,
PINNs found applications also in CFD problems [3].
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Using NNs as a solution approximator is an obvious
choice due to the popularity of neural architecture, however
any universal, differentiable, trainable model can be used in
their stead. One proposal replaces NNs with Differentiable
Quantum Circuits (DQCs) [4], as represented in Fig. 1.
The approach is variational (which makes it more viable on
near-term quantum hardware [4]), and offers exact differen-
tiation [5], removing the need of numerical differentiation
entirely. Finally, DQC offers efficient ways to encode prob-
lem features (e.g., coordinates), leveraging the exponentially
large Hilbert space (w.r.t. the number of qubits) accessed by
the quantum circuits [4, 6]. Therefore, their execution can
be more energy-efficient, when compared to GPU training
of NNs.

2. Methods
Consider the following generic differential problem

𝜕𝑢
𝜕𝑡

+ [𝑢] = 0, 𝑡 ∈ [0, 𝑇 ] , 𝑥 ∈ Ω, (1)

𝑢(𝑡 = 0, 𝑥) = 𝑔(𝑥), 𝑥 ∈ Ω, (2)
 [𝑢] = 0, 𝑡 ∈ [0, 𝑇 ] , 𝑥 ∈ 𝜕Ω, (3)

where  is a generic nonlinear operator of 𝑢 and its 𝑥-
derivatives, 𝑔(𝑥) is an initial condition and  [𝑢] is a bound-
ary operator.

In the DQC methodology, we approximate the solution
as 𝑢(𝑥) ≈ 𝑢𝜃(𝑥), via the expectation value of an observable
̂:

𝑢𝜃(𝑥) = ⟨𝑢𝜃 (𝑥)||̂||𝑢𝜃 (𝑥)⟩ , (4)

https://doi.org/10.34734/FZJ-2025-02445
https://doi.org/10.34734/FZJ-2025-02175


S. Chaudhary et al.: Solving Fluid Dynamics Equations with Differentiable Quantum Circuits

Figure 1: Diagram of the DQC algorithm.

Figure 2: Lid-driven flow in a square cavity solved with DQC. On the left is the total velocity magnitude and on the right the
velocity profile.

measured on the output state |

|

𝑢𝜃 (𝑥)⟩ of a Quantum Neural
Network (QNN), a circuit described by (trainable) 𝜃 param-
eters and encoding the features 𝑥 as [7]

|

|

𝑢𝜃(𝑥)⟩ = 𝑈𝜃𝑈𝜑 (𝑥) |0⟩ . (5)

𝜃’s are trained to minimize a loss function evaluating the
residuals of Eqs. 1-3, when 𝑢𝜃(𝑥) → 𝑢(𝑥), with 𝑈𝜑(𝑥) and
𝑈𝜃 unitary operations.

3. Results
Figure 2 shows the solution of the lid-driven cavity

flow problem obtained with DQC. We present the solution
of the incompressible Navier-Stokes equation in its non-
dimensional, steady state form

(𝐕 ⋅ 𝛁)𝐕 = −𝛁𝑝 + 1
Re

∇2𝐕, (6)
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Figure 3: Pressure field downstream from an obstacle at 𝑥 = 0. On left is the reference FEM result. In middle is the prediction
of a Trainable Frequency (TF) QNN. On the right is the prediction of a Fixed Frequency (FF) QNN.

where 𝐕 = (𝑣𝑥, 𝑣𝑦)𝑇 is the 2D velocity vector, 𝑝 is the
pressure and Re is the REYNOLDS number. The QNN sur-
rogate for 𝐕 and 𝑝 employed 4 qubits for both 𝑥 and 𝑦
coordinates, and used 8 layers of the so-called hardware
efficient ansatz [8] as 𝑈𝜃 . The solution for Re=150 matches
closely the benchmark obtained via a finite element method
(FEM) solver.

The spectrum of frequencies accessible to the feature
map in the quantum circuit can be augmented by including in
𝑈𝜑 additional trainable variational parameters [9]. Figure 3
shows the pressure field downstream from a cylinder for 2D
time-dependent Navier-Stokes equations.

A QNN approximating the stream function 𝜓̃ is used
to derive the two components of the velocity 𝐕 and to
satisfy the continuity relation automatically. Another QNN
is used to approximate the pressure field 𝑝. Each QNN
employs 8 layers of the ansatz. The results for Re=100 show
a noticeable improvement compared to a fixed frequency
version of the QNNs.

4. Conclusions
In this work, we applied the DQC algorithm to fluid

dynamics PDEs. We presented promising results obtained
both with various feature map architectures. Ongoing devel-
opment aims to also include inductive biases [10], targeting,
e.g., irrotational flows.
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