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A B S T R A C T

A novel approach for the generation of drag correlations for multiphase flows is presented. Fully
resolved computational fluid dynamics simulations for multiphase flows are performed to provide
ground truth data. An artificial neural network is trained to learn the accurate particle behavior based
on less accurate flow data from the Lagrangian particle simulation. For the case of a settling spherical
particle, this approach outperforms the existing empirical model.

1. Introduction
Due to the computational intensity of fully resolved

simulations, Lagrangian point particle models are widely
spread for the simulation of particle laden flow with tech-
nical relevant numbers of particles. These models rely on
empirical drag correlations for the determination of particle
forces. It is well known that these models are only valid for
𝑑𝑝 ≪ Δ𝑥 [1]. The goal of this work is to use artificial neural
networks (ANN) instead of empirical correlations to remedy
this shortcoming.

2. Methods
2.1. Resolved particle simulations

For the fully resolved particle simulation, a Lattice
Boltzmann method (LBM) is combined with a rigid body
solver (Fig. 1a). A detailed description of the LBM imple-
mentation can be found in [2]. The base grid has a grid size
of Δ𝑥𝛼 with additional adaptive mesh refinement around
the moving particle, providing a local resolution of Δ𝑥𝛽 .
The forces acting on the particle surface 𝐹 are determined
by integrating the hydrodynamic forces over the particle
surface using the momentum exchange method for LBM.
This information is used to solve the motion equation of each
particle, which is defined in a Lagrangian frame of reference
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by using a predictor-corrector scheme. At the boundary Γ𝑏
(see Fig. 1a), the no-slip condition is enforced with 𝑢Γ = 𝑢𝑝
where 𝑢𝑝 refers to the particle velocity.

2.2. Lagrangian particle tracking
For the Lagrangian particle tracking simulations, the

rigid body solver is replaced by a point particle approach.
The particle motion is described by the Maxey-Riley equa-
tion [1]. If the added mass and history force are neglected,
the motion eq. (1) is solved. Here, the momentum equation
for the carrier fluid is solved on a uniformly refined grid with
Δ𝑥𝛼 . The force 𝐹𝑝 is provided by empiric correlations 𝐶𝐷,
such that
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with the particle REYNOLDS number 𝑅𝑒𝑝, the particle relax-
ation time 𝜏𝑝 the carrier fluid viscosity 𝜇 and particle density
𝜌𝑝. Here, the classical Schiller-Naumann equation for the
drag part [1] is used, which reads as

𝐶𝐷 = 24
𝑅𝑒𝑝

(1 + 1
6
𝑅𝑒2∕3𝑝 ). (2)

A two-way coupled approach is chosen to capture the
particle motion feedback onto the flow field. The momen-
tum equation for the carrier fluid phase is extended by the
momentum source term associated with the particle reaction
force, which reads as

𝐹𝑓,𝑝 = −(‖𝑥⃗ − 𝑥𝑝‖)𝐹𝑝, (3)
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Figure 1: Grid setup for fully resolved simulations (a) and Lagrange particle simulations (b). Body-relative sampling locations 𝑥⃗𝑠,𝑖
are shown as .

where (⋅) is a Gaussian kernel, which distributes the mo-
mentum source to the vicinity of the particle. The standard
deviation is chosen as 6𝜎 = 1.6𝑑𝑝. By doing so, the intrinsic
drawback of the Lagrange particle tracking method becomes
apparent: The velocity field is locally disturbed by the two-
way coupled approach, resulting in an erroneous evaluation
of the given empirical correlation defined for the undisturbed
carrier fluid velocity.

2.3. ANN based correlations from fully resolved
simulations

The first step is to provide an improved drag correlation
by using data from fully resolved simulations. For each time
step 𝑛, the hydrodynamic force 𝐹 𝑛 acting on a given particle
is known. Additionally, the velocity field at 𝑁𝑠 points 𝑥⃗ 𝑛

𝑠,𝑖
relative to the body position 𝑥⃗ 𝑛

𝑏 is extracted (see Fig. 1a).
This information forms a dataset

{𝑢 𝑛
𝑟𝑒𝑙,𝑖, 𝐹

𝑛} with 𝑢𝑟𝑒𝑙,𝑖 = 𝑢𝑠,𝑖 − 𝑢𝑏, (4)

which serves as training data for an artificial neural network
(ANN) to find a suitable relation in the form of 𝐹 ≈ 𝑓 (𝑢𝑠,𝑖).

The ANN is a multilayer perceptron composed of an
input layer with 𝑁𝑠 neurons, three fully connected layers
with 64 neurons each, and a final layer with 3 neurons,
one for each force component. The relatively small network
architecture is chosen to guarantee an efficient performance
for parallel CFD computations on high-performance com-
puting (HPC) systems. A larger network architecture would
negatively affect the efficiency of the proposed method, since
the ANN must be employed by each rank for the number
of particles in the corresponding rank for every time step.
The weights and biases are updated by an adaptive moments
(ADAM) optimizer [3] and a mean-squared error (MSE) loss
function. A leaky-Rectified linear unit (ReLU) activation

function is chosen [4], a variation of the ReLU activation
function [5].

The obtained ANN is used as a novel force correlation
for the Lagrange particle tracking. Different to the known
correlations such as eq. (2), the input data accounts for the
velocity disturbance caused by the boundary condition in the
fully resolved simulation. To enable the use of the obtained
ANN inside the LPT simulation, the analogous velocity data
at the points 𝑥𝑠,𝑖 has to be obtained (see Fig. 1b).

While this approach makes use of the most accurate data,
systematic deviations of the input data (i.e., the velocity
field) have to be expected in Lagrangian particle simulations.
This is due to the lower grid resolution and the fact, that
the momentum feedback compared to the fully resolved
simulation is fundamentally different.

2.4. ANN based correlations from coupled
simulations

To address these drawbacks, a novel approach is pro-
posed. Here, both the fully resolved simulation and the LPT
simulation are run simultaneously. For each time step, the
particle trajectory from both simulation is coupled by setting

𝑢𝑝,𝐿𝑃𝑇 = 𝑢𝑝,𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 . (5)

From this coupled simulation, a dataset similar to eq. (4)
is extracted by sampling the carrier fluid velocity from the
LPT. The resulting ANN can be used in LPT simulations, as
described in Sec. 2.3.

3. Results
The generic case of spherical particle settling in an ini-

tially quiescent fluid is considered. The REYNOLDS number
with respect to terminal velocity is chosen as 𝑅𝑒 = 32. Both
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Figure 2: Particle velocity 𝑢𝑝∕𝑢𝑡 and position 𝑥𝑝 for Schiller-Naumann (SN), ANN from fully resolved simulations (ANN-I) and
ANN from coupled simulations (ANN-II), with 𝑢𝑡 as theoretical terminal velocity.

new models are only trained with data for 𝑑𝑝∕Δ𝑥 = 4. The
results for all models and resolutions in the range 𝑑𝑝∕Δ𝑥 =
[0.25, 16.0] are shown in Fig. 2.

As expected, the SN model yields significant deviations
from the reference values for large 𝑑𝑝∕Δ𝑥. For smaller
𝑑𝑝∕Δ𝑥, the solution approaches the one-way coupled case
with 𝑢𝑝∕𝑢𝑡 = 1. The variation of the result over 𝑑𝑝∕Δ𝑥 is
greatly reduced for both ANN based models. Additionally,
the transient behavior is improved. Overall, the ANN-II
model shows the most promising results with respect to the
fully resolved reference solution.
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