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A B S T R A C T

Fluid flow modeling and control is a significant modern challenge with potential impacts across
science, technology, and industry. Improved flow control could enhance drag reduction, mixing,
and noise reduction in areas like transportation, energy, and medicine. However, progress in flow
control is currently hindered by the lack of systematically standardized benchmarks and the high
computational cost of fluid simulations. While two-dimensional problems have been extensively
studied, three-dimensional simulations with larger meshes are rarely considered due to the need for
highly parallelized and specialized solvers. As a result, the engineering burden of encapsulating these
simulations in benchmark environments has proven to be a significant barrier. In this paper, a GPU-
based extension of the HydroGym platform coupling the multiphysics solver framework m-AIA with
a state-of-the-art reinforcement learning platform is presented for fluid flow control problems. Based
on the highly-parallelized lattice Boltzmann solver, which is part of m-AIA, a new set of three-
dimensional, non-differentiable fluid flow environments is added that extend existing flow control
challenges to a new level of physical and computational complexity.

1. Introduction
The effective control of fluid dynamics is a critical

challenge in many scientific, technological, and industrial
systems and improved flow control has the potential to
dramatically enhance performance in domains as diverse
as energy, transportation, security, and medicine. For ex-
ample, turbulent wall-bounded fluid flows are of significant
importance for numerous engineering [1, 2, 3, 4, 5] and
biomedical applications [6, 7, 8, 9, 10], e.g., in the con-
text of reducing the CO2 emissions in the transportation
sector or enhancing disease prevention and monitoring in
human medicine. Moreover, understanding and controlling
the dynamics of mixing processes and multi-phase flows,
such as microscopic fibers or gas bubbles in turbulent flows,
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is crucial for various environmental and industrial applica-
tions, including pollution control [11, 12], marine biology
[13, 14], and chemical engineering [15, 16, 17]. However,
controlling fluid flow is notoriously difficult due to the non-
linear and multiscale nature of fluid dynamics, which leads
to high-dimensional and non-convex control problems, but
rapid advancements in machine learning have significantly
improved our ability to tackle these complex optimization
challenges [18]. For example, reinforcement learning has
recently achieved notable successes in various modern tasks,
including decision-making in planning [19], robotics [20],
and protein design [21]. A major factor driving these ad-
vances is the development of scalable reinforcement learning
frameworks and standardized environments, which facilitate
direct comparisons between learned policies.

In contrast, progress in reinforcement learning for flow
control has been limited by the scarcity of such platforms.
To overcome this fundamental limitation, a new scalable
and extensible platform called HydroGym was recently de-
veloped that closes the loop between efficient flow solvers,
flow control benchmark problems, and state-of-the-art re-
inforcement learning. However, rooting in a finite-element
based PDE solver called Firedrake, the existing HydroGym
environments are limited to a variety of two-dimensional
benchmark flows since running and validating advanced
three-dimensional simulations is not feasible due to scala-
bility issues of the Firedrake solver.
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Figure 1: Flow configurations and benchmark algorithms included in the initial and extended HydroGym-GPU platform.

To tackle this limitation, a new GPU-accelerated ex-
tension bridging the lattice Boltzmann (LB) solver imple-
mented in the multiphysics solver framework m-AIA1 (for-
merly known as Zonal Flow Solver - ZFS [22, 23]) with the
extensible HydroGym platform is introduced. Based on pre-
vious, successful RL applications [24] using this highly par-
allelized LB solver, a novel collection of three-dimensional,
non-differentiable fluid flow environments has been incor-
porated. These additions elevate the existing flow control
challenges to an unprecedented level of physical and com-
putational complexity.

2. HydroGym-GPU
Recent advances have combined reinforcement learning

with flow control, focusing on three main areas: controlling
individual environments, developing strategies to navigate

1multiphysics - Aerodynamisches Institut Aachen

through flow environments, and using multi-agent reinforce-
ment learning to learn components of numerical solvers. De-
spite these impressive results, the studies have been limited
to specific flow control environments and lack the diversity
found in modern machine learning frameworks. Hence, to
effectively apply modern reinforcement learning to a broader
class of fluid flow control problems, it appears to be ben-
eficial to train policies across multiple environments. As a
result, this approach allows for fine-tuning existing agents
for future applications and significantly reduces computa-
tional efforts, especially for three-dimensional simulations.
Therefore, integrating various flow control environments
with different computational complexities requires scaling
both the environments and the reinforcement learning agents
to optimally use available computational resources.

One solution to tackle these problems is the usage of
highly efficient and parallelized CFD solvers combined with
modern data exchange protocols suitable for large-scale
HPC application to enable efficient communication between
RL agents and environments during runtime. Therefore,
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the present work leverages the existing LB solver of the
m-AIA framework offering compute efficient and largely
scalable simulations. It benefits from a hybrid parallelization
approach based on MPI and a shared memory model either
based on OpenMP or on the parallel algorithms defined in
the C++ standard 17 (PSTL) implemented in the NVIDIA
HPC SDK allowing for i) a hardware-agnostic implemen-
tation on CPU and GPU and ii) favorable strong and weak
scaling on modern HPC architectures. The LB solver op-
erates on hierarchical unstructured Cartesian grids, which
are generated using a massively parallel grid generator [25]
being part of m-AIA. The discretized form of the Boltzmann
equation is solved with the Bhatnagar-Gross-Krook (BGK)
approximation of the right-hand side collision process [26],
i.e.,

𝑓𝑖(𝒙+𝝃𝒊𝛿𝑡, 𝑡+𝛿𝑡)−𝑓𝑖(𝒙, 𝑡) = −𝜔(𝑓𝑖(𝒙, 𝑡)−𝑓 𝑒𝑞
𝑖 (𝒙, 𝑡)), (1)

is solved for the particle probability distribution functions 𝑓𝑖
(PPDFs) at neighboring fluid cells at locations 𝒙+𝝃𝒊𝛿𝑡. They
are functions of the location vector 𝒙 = (𝑥1, 𝑥2, 𝑥3)𝑇 , the
discrete molecular velocity vector 𝝃𝒊 = (𝜉𝑖1, 𝜉𝑖2, 𝜉𝑖3)𝑇 , and
the time and time increment 𝑡 and 𝛿𝑡. The collision frequency
is expressed by 𝜔.

To enable highly efficient communication between our
LB solver and the RL agents, we extended m-AIA’s MPI
interface leveraging the Multiple Program Multiple Data
(MPMD) mode. The MPMD interface has the great advan-
tage of executing different programs across multiple proces-
sors and heterogeneous compute hardware, e.g., CPU-CPU,
CPU-GPU, GPU-GPU setups while facilitating complex,
distributed computations. Moreover, MPMD supports the
use of different programming languages and tools within
the same application. This interoperability is extremely
beneficial for the present HydroGym benchmark platform
as it facilitates efficient communication between different
m-AIA flow environments and standard, Python-based RL
libraries. Moreover, it allows for frequent data exchange
and coordination between different computational tasks with
barely any computational overhead enabling very efficient
training runs. Finally, it also enables multi-agent/multi-
environments training protocols in a straightforward fash-
ion without requiring changes in the code. To this end,
all communications between environments and agents as
wells as inter-environment communication (if necessary)
is handled by our MPMD interface, while relevant inter-
agent communication, e.g., gradient and weight sharing,
is realized using existing deep learning libraries (JAX,
PyTorch, TensorFlow, etc.).

Leveraging this computational efficiency of the GPU-
accelerated LB solver and the MPMD communication,
three-dimensional fluid flow environments with grid sizes

on the order of 100 ⋅ 106 cells are added to the HydroGym
platform, paving the way for novel transfer learning and
control applications in the largely unexplored chapter of
three-dimensional flow control. Precisely, two distinct drag
reduction scenarios which are typically considered as bench-
mark problems in CFD code development are implemented:

3D Cylinder Flow: The first test case of our HydroGym-
GPU extension targets the flow around a smooth circular
cylinder which is characterized by a large range of interest-
ing fluid mechanics phenomena as the REYNOLDS number
(𝑅𝑒) is increased from a low to high 𝑅𝑒-number regime,
e.g., 100 < 𝑅𝑒 < 105. In more detail, the flow develops
from a two-dimensional steady wake to three-dimensional
unsteady vortex shedding, followed by wake transition, shear
layer instability and boundary layer transition. The present
flow simulation setup is validated to be accurate for 𝑅𝑒 <
4,000. To facilitate interactions between the RL agent and
the flow environment, multiple mass sources are equally
distributed across the circumference of the cylinder, each
being independently controllable. Note that the mass sources
extend over the entire spanwise direction. The state space,
which the RL agent observes, can include a mixture of an
arbitrary number of probes, including velocity, vorticity,
pressure, and density sensors, that can be distributed in
the entire computational domain. The reward metric is
calculated based on the weighted total force value in all three
dimensions similar to two-dimensional counterparts.

3D Sphere Flow: The second test case consists of an
unsteady flow past a sphere. In the subcritical regime, e.g.
800 < 𝑅𝑒 < 3.7 ⋅ 105, the dynamics show a variety of
complex flow patterns including a thin laminar boundary
layer, flow separation at a location that is not known a priori,
transition to turbulence in thin shear layers, and an unsteady
recirculation zone followed by a turbulent wake. Without
faithful representation of these flow features, it is not pos-
sible to accurately predict aerodynamic or hydrodynamic
loading on complex-geometry objects. This is important
since a drag reduction setup similar to the cylinder flow
case is considered here. In the current implementation, the
flow simulations are validated for 𝑅𝑒 < 104. To enable
interactions between the RL agent and the flow environment,
up to 32 individually controllable point mass sources are
distributed across the sphere surface. Similar to the cylinder
test case, the observational state space can comprise an
arbitrary number of velocity, vorticity, pressure, and density
sensors. Again, the reward is based on the integral force
value in all three dimensions.

3. Results
In the following, we briefly present validation results for

the introduced 3D flow environments and compare them to
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(a) Drag distribution over time for a single test episode. (b) Lift distribution over time for a single test episode.

(c) Instantaneous vorticity snapshot of an uncontrolled flow environ-
ment.

(d) Instantaneous vorticity snapshot of a flow environment controlled
by a PPO agent.

Figure 2: Exemplary test results of on- (PPO) and off-policy (DDPG, TD3) agents for the 2D cylinder flow test case at 𝑅𝑒 = 100.

literature. Afterwards, we shortly discuss training results for
different agents interacting with a 2D cylinder flow at 𝑅𝑒 =
100 and outline how successfully learned control policies
can be leveraged in transfer learning experiments to reduce
computational costs in complementing 3D environments.

Validation: A grid refinement study has been conducted
for 3D simulations with 𝑅𝑒 = 200 by comparing the drag
coefficient 𝐶𝑑 = (2 ⋅𝐹𝑥)/(𝜌 ⋅𝑈 ⋅𝐴) to the results in [27], with
the temporally averaged force in the streamwise direction
acting on the cylinder 𝐹𝑥, the density 𝜌, the inlet velocity 𝑈 ,
and the cross-sectional area of the cylinder 𝐴. The grids are
locally refined with 2 cubic refinement patches that capture
the wake region and 3 cylindrical refinement patches for the
near-wall regions. The results are shown in Tab. 1. Since an
additional gain in accuracy of only 0.1% for the simulation
with the fine grid compared to the medium grid an increased
grid size from 40 ⋅ 106 to 80 ⋅ 106 cells cannot be justified
and the medium grid is used for training the RL agents.

Training results: To investigate the effectiveness of our
GPU-enhanced benchmark platform, we performed multiple
tests for a variety of RL agents proposed in literature
and conducted extensive hyperparameter optimizations and
transfer learning experiments across different flow environ-
ments. However, for sake of brevity, here we only elaborate
on the selected test case of a flow around cylinder at a
𝑅𝑒 = 100. Extensive results for all other test cases will be
discussed in follow-up work.

Grid resolution No. cells 𝐶𝑑 [dev. to 𝐶𝑑 = 1.338 [27]]
Coarse 20 ⋅ 106 1.180 [−11.8%]
Medium 40 ⋅ 106 1.317 [−1.6%]

Fine 80 ⋅ 106 1.318 [−1.5%]

Table 1
Grid refinement study for 3D simulations at 𝑅𝑒 = 200.

2D flow environment: Figure 2 exhibits exemplary test re-
sults for different RL agents including one on-policy (PPO)
and two off-policy methods (DDPG and TD3). As illustrated
in Fig. 2d, all agents learn a competitive control policy that
stabilizes the wake and mostly reduce the lift fluctuations
caused by the vortex shedding (see Fig. 2b). Overall, a total
drag reduction of approximately 12% can be achieved across
all agents (see Fig. 2a) which is in line with previous studies
reported in literature. More importantly, by leveraging the
highly efficient m-AIA LB solver in combination with the
developed MPMD interface, our HydroGym-GPU extension
requires only approximately 40 minutes on a single NVIDIA
A100 GPU for a full training cycle (400 episodes, each
containing 20 vortex shedding periods), marking a new
milestone for comparable flow environments in terms of
efficiency.

Transfer learning to 3D flow environments: In the fol-
lowing, we highlight another interesting aspect about the
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(a) zero-shot transfer learning (no training) (b) fine-tuned control policy (20 episodes)

Figure 3: Transfer learning experiments from 2D to 3D environments leveraging (a) zero-shot applications without further training
in the target environment and (b) fine-tuning experiments with limited adaptation (20 training episodes) in the target environment.

HygroGym-GPU platform enabling transfer learning exper-
iments in a straightforward fashion. Here, we demonstrate
this feature in two experiments - first, we directly transfer
a control policy learned in the 2D flow case to the corre-
sponding 3D environment, e.g. a zero-shot transfer with no
subsequent training/adaptation, and second, we fine-tune the
2D flow control policy for 20 episodes in the 3D environ-
ment. Results are shown in Fig. 3 and exhibit promising
trends for future compute intensive 3D flow environments.
That is, even in the zero-shot transfer, the agent can mostly
suppress the vortex shedding in the wake and achieves a drag
reduction of approximately 8 % (see Fig. 3a). Considering
that the agent has never explored the 3D environment before
and consequently could never adapted to it, these results
indicate a good performance for future, more general control
agents leveraging foundation models across multiple flows
simultaneously.

Furthermore, we can improve the performance of the
control policy in the 3D environment using a fine-tuning
training step in the new test environment. Precisely, we
now allow the agent to adapt its network parameters to
the new environment in a limited training sequence (max.
20 episodes for the 3D test case). Results are shown in
Fig. 3b. The fine-tuned control agent can achieve a similar
drag reduction performance compared to the original 2D
test case. As a result, this hybrid transfer learning strategy
requires only a fraction of the computational costs of training
procedures exploring exclusively 3D environments, but still
learns competitive control policies. Hence, pre-training in
a simpler 2D environment with low or moderate compute
requirements followed by a fine-tuning sequence in more
challenging 3D environments massively reduces the training
time and costs. This finding is particularly promising for
future HydroGym-GPU extensions which will investigate
various complex and compute intensive 3D flow cases
exhibiting turbulence dominated flow features.

4. Conclusion
In this contribution, a novel GPU-accelerated extension

of the recently introduced HydroGym platform is presented,
connecting the multi-physics solver framework m-AIA with
this adaptable RL benchmark. By utilizing a highly paral-
lelized LB solver, a representative set of three-dimensional,
non-differentiable fluid flow scenarios has been integrated
and validated. Furthermore, we outlined that hybrid transfer
learning strategies, which pre-train an agent in a simple
flow environment of moderate computational complexity
and fine-tune the policy in the target environment, require
only a fraction of the computational costs compared to
training procedures exploring costly 3D environment, yet
learn competitive control policies. In future, we will extend
our highly efficient HydroGym-GPU platform and introduce
more challenging and real-world oriented test cases such
as aviation applications, noise reduction in aeroacoustics
settings, and mixing enhancement in multi-phase flows. Ad-
ditionally, future benchmarks will investigate model-based
RL agents that use latent dynamical models to uncover
physical mechanisms [28], as part of our quest for general
foundation models in fluid flow control. These advance-
ments will significantly elevate the complexity of existing
flow control challenges, introducing new levels of physical
and computational intricacy.

Acknowledgements
The research leading to these results partially has been

conducted in the HANAMI project, which receives funding
from the European Union Horizon Europe Programme
- Grant Agreement Number 101136269 under the call
HORIZON-EUROHPC-JU-2022-INCO-04. The authors
gratefully acknowledge the computing time granted by the
JARA Vergabegremium and provided on the JARA Partition
part of the supercomputer JUWELS [29] at Forschungszen-
trum Jülich. Moreover, this research was partially funded
by the German Research Foundation within the Walter
Benjamin fellowship LA 5508/1-1 (CL) and CL and SLB



C. Lagemann et al.: HydroGym-GPU: From 2D to 3D Benchmark Environments for Reinforcement Learning in Fluid Flows

acknowledge support from the National Science Foundation
AI Institute in Dynamic Systems (grant number 2112085)
and the Boeing Company. Furthermore, the authors grate-
fully acknowledge the Gauss Centre for Supercomputing
e.V. for funding this project by providing computing time
on the GCS Supercomputers (CL, MM, MG, WS).

References
[1] I. Marusic, R. Mathis, N. Hutchins, Predictive Model for

Wall-Bounded Turbulent Flow, Science 329 (5988) (2010)
193–196. doi:10.1126/science.1188765.

[2] P. Ricco, M. Skote, M. A. Leschziner, A review of turbulent
skin-friction drag reduction by near-wall transverse forcing,
Progress in Aerospace Sciences 123 (2021) 100713. doi:

10.1016/j.paerosci.2021.100713.
[3] E. Lagemann, M. Albers, C. Lagemann, W. Schröder, Im-

pact of Reynolds Number on the Drag Reduction Mecha-
nism of Spanwise Travelling Surface Waves, Flow, Turbu-
lence and Combustion 113 (1) (2024) 27–40. doi:10.1007/

s10494-023-00507-1.
[4] E. Mäteling, M. Albers, W. Schröder, How spanwise trav-

elling transversal surface waves change the near-wall flow,
Journal of Fluid Mechanics 957 (2023) A30. doi:10.1017/

jfm.2023.54.
[5] E. Lagemann, S. L. Brunton, W. Schröder, C. Lagemann,

Towards extending the aircraft flight envelope by mitigating
transonic airfoil buffet, Nature Communications 15 (1) (2024)
5020. doi:10.1038/s41467-024-49361-3.

[6] J. Bellien, M. Iacob, V. Richard, J. Wils, V. Le Cam-Duchez,
R. Joannidès, Evidence for wall shear stress-dependent t-PA
release in human conduit arteries: role of endothelial factors
and impact of high blood pressure, Hypertension Research
44 (3) (2021) 310–317. doi:10.1038/s41440-020-00554-5.

[7] G. Zhou, Y. Zhu, Y. Yin, M. Su, M. Li, Association of wall
shear stress with intracranial aneurysm rupture: systematic
review and meta-analysis, Scientific Reports 7 (1) (2017)
5331. doi:10.1038/s41598-017-05886-w.

[8] L. Adamo, O. Naveiras, P. L. Wenzel, S. McKinney-Freeman,
P. J. Mack, J. Gracia-Sancho, A. Suchy-Dicey, M. Yoshi-
moto, M. W. Lensch, M. C. Yoder, G. García-Cardeña,
G. Q. Daley, Biomechanical forces promote embryonic
haematopoiesis, Nature 459 (7250) (2009) 1131–1135. doi:

10.1038/nature08073.
[9] E. Tzima, M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A.

Schultz, B. Engelhardt, G. Cao, H. DeLisser, M. A. Schwartz,
A mechanosensory complex that mediates the endothelial cell
response to fluid shear stress, Nature 437 (7057) (2005) 426–
431. doi:10.1038/nature03952.

[10] E. Lagemann, S. L. Brunton, C. Lagemann, Uncovering wall-
shear stress dynamics from neural-network enhanced fluid
flow measurements, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 480 (2292)
(2024). doi:10.1098/rspa.2023.0798.

[11] J. González-Martín, N. J. R. Kraakman, C. Pérez, R. Lebrero,
R. Muñoz, A state–of–the-art review on indoor air pollution
and strategies for indoor air pollution control, Chemosphere
262 (2021) 128376. doi:10.1016/j.chemosphere.2020.128376.

[12] M. He, Z. Xu, D. Hou, B. Gao, X. Cao, Y. S. Ok, J. Rinklebe,
N. S. Bolan, D. C. W. Tsang, Waste-derived biochar for
water pollution control and sustainable development, Nature
Reviews Earth & Environment 3 (7) (2022) 444–460. doi:

10.1038/s43017-022-00306-8.
[13] C. D. O’Dowd, M. C. Facchini, F. Cavalli, D. Ceburnis,

M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, J.-P. Putaud,
Biogenically driven organic contribution to marine aerosol,
Nature 431 (7009) (2004) 676–680. doi:10.1038/nature02959.

[14] A. Paytan, K. R. M. Mackey, Y. Chen, I. D. Lima, S. C.
Doney, N. Mahowald, R. Labiosa, A. F. Post, Toxicity of
atmospheric aerosols on marine phytoplankton, Proceedings
of the National Academy of Sciences 106 (12) (2009) 4601–
4605. doi:10.1073/pnas.0811486106.

[15] V. Hessel, H. Löwe, F. Schönfeld, Micromixers—a review on
passive and active mixing principles, Chemical Engineering
Science 60 (8-9) (2005) 2479–2501. doi:10.1016/j.ces.2004.
11.033.

[16] V. Giurgiu, L. Beckedorff, G. C. Caridi, C. Lagemann,
A. Soldati, Machine learning-enhanced PIV for analyzing
microfiber-wall turbulence interactions, International Journal
of Multiphase Flow 181 (2024) 105021. doi:10.1016/j.

ijmultiphaseflow.2024.105021.
[17] E. Lagemann, J. Roeb, S. L. Brunton, C. Lagemann, A

deep learning approach to wall-shear stress quantification:
From numerical training to zero-shot experimental applica-
tion (2024). arXiv:2409.03933.

[18] S. L. Brunton, J. N. Kutz, Data-Driven Science and Engineer-
ing, 2nd Edition, Cambridge University Press, 2022. doi:

10.1017/9781009089517.
[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the
game of Go with deep neural networks and tree search, Nature
529 (7587) (2016) 484–489. doi:10.1038/nature16961.

[20] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalash-
nikov, J. Varley, A. Irpan, B. Eysenbach, R. Julian, C. Finn,
S. Levine, Actionable Models: Unsupervised Offline Rein-
forcement Learning of Robotic Skills (2021). arXiv:2104.

07749.
[21] I. D. Lutz, S. Wang, C. Norn, A. Courbet, A. J. Borst, Y. T.

Zhao, A. Dosey, L. Cao, J. Xu, E. M. Leaf, C. Treichel,
P. Litvicov, Z. Li, A. D. Goodson, P. Rivera-Sánchez, A.-
M. Bratovianu, M. Baek, N. P. King, H. Ruohola-Baker,
D. Baker, Top-down design of protein architectures with
reinforcement learning, Science 380 (6642) (2023) 266–273.
doi:10.1126/science.adf6591.

https://doi.org/10.1126/science.1188765
https://doi.org/10.1016/j.paerosci.2021.100713
https://doi.org/10.1016/j.paerosci.2021.100713
https://doi.org/10.1007/s10494-023-00507-1
https://doi.org/10.1007/s10494-023-00507-1
https://doi.org/10.1017/jfm.2023.54
https://doi.org/10.1017/jfm.2023.54
https://doi.org/10.1038/s41467-024-49361-3
https://doi.org/10.1038/s41440-020-00554-5
https://doi.org/10.1038/s41598-017-05886-w
https://doi.org/10.1038/nature08073
https://doi.org/10.1038/nature08073
https://doi.org/10.1038/nature03952
https://doi.org/10.1098/rspa.2023.0798
https://doi.org/10.1016/j.chemosphere.2020.128376
https://doi.org/10.1038/s43017-022-00306-8
https://doi.org/10.1038/s43017-022-00306-8
https://doi.org/10.1038/nature02959
https://doi.org/10.1073/pnas.0811486106
https://doi.org/10.1016/j.ces.2004.11.033
https://doi.org/10.1016/j.ces.2004.11.033
https://doi.org/10.1016/j.ijmultiphaseflow.2024.105021
https://doi.org/10.1016/j.ijmultiphaseflow.2024.105021
http://arxiv.org/abs/2409.03933
https://doi.org/10.1017/9781009089517
https://doi.org/10.1017/9781009089517
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/2104.07749
http://arxiv.org/abs/2104.07749
https://doi.org/10.1126/science.adf6591


C. Lagemann et al.: HydroGym-GPU: From 2D to 3D Benchmark Environments for Reinforcement Learning in Fluid Flows

[22] A. Lintermann, M. Meinke, W. Schröder, Zonal Flow Solver
(ZFS): a highly efficient multi-physics simulation frame-
work, International Journal of Computational Fluid Dynam-
ics 34 (7-8) (2020) 458–485. doi:10.1080/10618562.2020.

1742328.
[23] Insitute of Aerodynamics and Chair of Fluid Mechanics,

RWTH Aachen University, multiphysics - Aerodynamisches
Institut Aachen (2024). doi:10.5281/zenodo.13350585.

[24] M. Rüttgers, M. Waldmann, K. Vogt, J. Ilgner, W. Schröder,
A. Lintermann, Automated surgery planning for an obstructed
nose by combining computational fluid dynamics with rein-
forcement learning, Computers in Biology and Medicine 173
(2024) 108383. doi:10.1016/j.compbiomed.2024.108383.

[25] A. Lintermann, S. Schlimpert, J. Grimmen, C. Günther,
M. Meinke, W. Schröder, Massively parallel grid generation
on HPC systems, Computer Methods in Applied Mechanics
and Engineering 277 (2014) 131–153. doi:10.1016/j.cma.

2014.04.009.
[26] X. He, L.-S. Luo, Theory of the lattice Boltzmann method:

From the Boltzmann equation to the lattice Boltzmann equa-
tion, Physical Review E 56 (6) (1997) 6811–6817. doi:

10.1103/PhysRevE.56.6811.
[27] B. Rajani, A. Kandasamy, S. Majumdar, Numerical simula-

tion of laminar flow past a circular cylinder, Applied Mathe-
matical Modelling 33 (3) (2009) 1228–1247. doi:10.1016/j.

apm.2008.01.017.
[28] K. Lagemann, C. Lagemann, S. Mukherjee, Invariance-based

learning of latent dynamics, in: The Twelfth International
Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=EWTFMkTdkT

[29] D. Alvarez, JUWELS Cluster and Booster: Exascale
Pathfinder with Modular Supercomputing Architecture
at Juelich Supercomputing Centre, Journal of large-
scale research facilities JLSRF 7 (2021) A183.
doi:10.17815/jlsrf-7-183.

https://doi.org/10.1080/10618562.2020.1742328
https://doi.org/10.1080/10618562.2020.1742328
https://doi.org/10.5281/zenodo.13350585
https://doi.org/10.1016/j.compbiomed.2024.108383
https://doi.org/10.1016/j.cma.2014.04.009
https://doi.org/10.1016/j.cma.2014.04.009
https://doi.org/10.1103/PhysRevE.56.6811
https://doi.org/10.1103/PhysRevE.56.6811
https://doi.org/10.1016/j.apm.2008.01.017
https://doi.org/10.1016/j.apm.2008.01.017
https://openreview.net/forum?id=EWTFMkTdkT
https://openreview.net/forum?id=EWTFMkTdkT
https://openreview.net/forum?id=EWTFMkTdkT
https://doi.org/10.17815/jlsrf-7-183

