001     1041827
005     20250512202214.0
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-02459
037 _ _ |a FZJ-2025-02459
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)188513
|a Sarma, Rakesh
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 35th Parallel CFD International Conference 2024
|c Bonn
|d 2024-09-02 - 2024-09-04
|g ParCFD 2024
|w Germany
245 _ _ |a Predicting Turbulent Boundary Layer Flows Using Transformers Coupled to the Multi-Physics Simulation Tool m-AIA
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2025
295 1 0 |a Proceedings of the 35th Parallel CFD International Conference 2024
300 _ _ |a 76 - 79
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1746901685_11893
336 7 _ |0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|a Contribution to a book
|m contb
490 0 _ |a Schriften des Forschungszentrums Jülich IAS Series
|v 69
520 _ _ |a Time-marching of turbulent flow fields is computationally expensive with traditional numerical solvers. In this regard, transformer neural network, which has been largely successful in many other technical and scientific domains, can potentially predict complex flow fields faster compared to physics-based solvers. In this study, a transformer model is trained for a turbulent boundary layer problem, which is then coupled to the multi-physics solver m-AIA to make predictions of velocity fields. The method can potentially contribute to significant reduction in computational effort while maintaining high accuracy.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(EU-Grant)951733
|a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |0 P:(DE-HGF)0
|a Hübenthal, Fabian
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Orland, Fabian
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Terboven, Christian
|b 3
700 1 _ |0 P:(DE-Juel1)165948
|a Lintermann, Andreas
|b 4
|u fzj
770 _ _ |z 978-3-95806-819-3
773 _ _ |a 10.34734/FZJ-2025-02459
856 4 _ |u https://juser.fz-juelich.de/record/1041827/files/157.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041827
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)188513
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165948
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2025
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21