Home > Publications database > Predicting Turbulent Boundary Layer Flows Using Transformers Coupled to the Multi-Physics Simulation Tool m-AIA > print |
001 | 1041827 | ||
005 | 20250512202214.0 | ||
024 | 7 | _ | |2 datacite_doi |a 10.34734/FZJ-2025-02459 |
037 | _ | _ | |a FZJ-2025-02459 |
041 | _ | _ | |a English |
100 | 1 | _ | |0 P:(DE-Juel1)188513 |a Sarma, Rakesh |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a 35th Parallel CFD International Conference 2024 |c Bonn |d 2024-09-02 - 2024-09-04 |g ParCFD 2024 |w Germany |
245 | _ | _ | |a Predicting Turbulent Boundary Layer Flows Using Transformers Coupled to the Multi-Physics Simulation Tool m-AIA |
260 | _ | _ | |a Jülich |b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag |c 2025 |
295 | 1 | 0 | |a Proceedings of the 35th Parallel CFD International Conference 2024 |
300 | _ | _ | |a 76 - 79 |
336 | 7 | _ | |2 ORCID |a CONFERENCE_PAPER |
336 | 7 | _ | |0 33 |2 EndNote |a Conference Paper |
336 | 7 | _ | |2 BibTeX |a INPROCEEDINGS |
336 | 7 | _ | |2 DRIVER |a conferenceObject |
336 | 7 | _ | |2 DataCite |a Output Types/Conference Paper |
336 | 7 | _ | |0 PUB:(DE-HGF)8 |2 PUB:(DE-HGF) |a Contribution to a conference proceedings |b contrib |m contrib |s 1746901685_11893 |
336 | 7 | _ | |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |a Contribution to a book |m contb |
490 | 0 | _ | |a Schriften des Forschungszentrums Jülich IAS Series |v 69 |
520 | _ | _ | |a Time-marching of turbulent flow fields is computationally expensive with traditional numerical solvers. In this regard, transformer neural network, which has been largely successful in many other technical and scientific domains, can potentially predict complex flow fields faster compared to physics-based solvers. In this study, a transformer model is trained for a turbulent boundary layer problem, which is then coupled to the multi-physics solver m-AIA to make predictions of velocity fields. The method can potentially contribute to significant reduction in computational effort while maintaining high accuracy. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5111 |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |0 G:(EU-Grant)951733 |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733) |c 951733 |f H2020-INFRAEDI-2019-1 |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Hübenthal, Fabian |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Orland, Fabian |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Terboven, Christian |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)165948 |a Lintermann, Andreas |b 4 |u fzj |
770 | _ | _ | |z 978-3-95806-819-3 |
773 | _ | _ | |a 10.34734/FZJ-2025-02459 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1041827/files/157.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1041827 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)188513 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)165948 |a Forschungszentrum Jülich |b 4 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5111 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|