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Time-marching of turbulent flow fields is computationally expensive with traditional numerical
solvers. In this regard, transformer neural network, which has been largely successful in many other
technical and scientific domains, can potentially predict complex flow fields faster compared to
physics-based solvers. In this study, a transformer model is trained for a turbulent boundary layer
problem, which is then coupled to the multi-physics solver m-AIA to make predictions of velocity

fields. The method can potentially contribute to significant reduction in computational effort while
maintaining high accuracy.

1. Introduction

Numerical prediction of turbulence remains challenging
due to its multiscale nature that requires highly-resolved
simulations to accurately capture the temporal and spa-
tial dynamics [1]. In the Computational Fluid Dynamics
(CFD) community, numerical solvers capable of simulating
complex turbulent dynamics have been developed, albeit
demanding substantial computational resources and high
resolutions. Alternatively, Machine Learning models, for
instance based on Convolutional Neural Networks [2], have
emerged as promising alternatives. The use of transformer
architecture-based models for time-marching turbulent fields
have been limited to few recent successful efforts, often for
prediction of compressed representations of the flow field to
reduce computational effort [3, 4], which may suppress in-
formation of the high-frequency components. Nonetheless,
transformers can potentially be an effective neural network
to perform complex long-term temporal predictions of tur-
bulent flows, while allowing distributed training given the
multi-head attention configuration. In this study, the trans-
former architecture is applied to the prediction of a Turbulent
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Boundary Layer (TBL) problem, with a unique reconstruc-
tion strategy of the input velocity fields, which allows the
prediction of the full velocity field without any intermediate
compression step. Furthermore, the trained model is cou-
pled to the highly-parallel multi-physics simulation tool m-
AIA formerly known as the Zonal Flow Solver (ZFS) [5],
which was further developed towards m-AIA. The coupling
framework is needed to couple the physical solver (in this
case, m-AIA) to the distributed deep learning inference with
the transformer. Replacing m-AlA-based expensive time-
marching of the turbulent fields with the transformer model
is expected to significantly reduce the computational costs.

2. Turbulent boundary layer problem
specification

TBL via RSTG at the inflow
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Figure 1: Sketch of the CFD domain with the three-
dimensional actuated turbulent boundary layer flow. The gray
area indicates the region of interest where the TBL data is
extracted.
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Figure 2: Architecure of the transformer model based on encoder-decoder configuration adapted from [8].

The CFD model is based on a validated Zero-Pressure
Gradient flat plate approximation of the active drag reduc-
tion technique using spanwise traveling transversal surface
waves. Wall-resolved Large-Eddy Simulation (LES) is per-
formed using the in-house CFD solver m-AIA! [6, 7]. The
physical domain of the flat plate model is given in Fig. 1,
where the dimensions in the Cartesian directions are L, Ly
and L,. The actuation parameters are the wavelength A, the
time period T and the amplitude A. At the inflow of the
domain, the reformulated synthetic turbulence generation
(RSTG) method is used to initiate a TBL flow. The onset
of the surface actuation, analyzed in [6, 7], is located at x,
where a fully developed TBL is established. The surface area
Ag,¢ for the integration of the wall-shear stress 7, is shaded
in gray. Periodic Boundary Conditions (BC) are used in the
spanwise direction z, characteristic outflow conditions are
applied on the downstream and upper boundaries, and the
no-slip condition is imposed on the wall [6].

Further details on the numerical method, the computa-
tional setup, validation of the LES and BC can be found in
Albers et al. [6].

3. Transformer for temporal prediction

The transformer architecture is adapted from an encoder-
decoder configuration, used for temporal predictions [8],
which is shown in Fig. 2. The encoder consists of an input
layer, positional encoding and a stack of six encoding layers,
where each layer consists of a self-attention and a fully
connected layer, followed by a normalization layer. The input

Im-AIA https://git.ruth-aachen.de/aia/m-AIA/m-AIA

layer is a fully-connected network and the positional encod-
ing consists of sine and cosine functions. For the decoder
layers, there is additional layer to apply self-attention over
encoder outputs, where the input is from the encoder output
and the decoder output is a linear mapping to the target
sequence. Look-ahead masks are applied to ensure that the
decoder only sees information from the previous time-steps.

If the training dataset consists of n velocity fields at
time-instances ¢, 1,, ..., t,, the encoder takes in a sequence
of wL U, as input, and the decoder outputs the
velocities at time-instances w, _,...,u; , where 1 < m <
n. Here, u is the velocity field vector, m is the encoder
sequence length and n — m is the target sequence length.
The decoder input in this case would consist of velocities
at time-instances LSRN | P The input velocity field is

reshaped to smaller cubic sub-domains (83 for this study),
where each sub-domain is treated as a separate batch by the
transformer. This allows to limit the number of features that
the model needs to predict, thus reducing the complexity
of the self-attention mechanism. Furthermore, 16 attention
heads are employed and the Adam optimizer is used for
training. The trainings are conducted with the DeepSpeed?
framework in a distributed training setup provided by the
AI4HPC? library. Exemplary predictions by the transformer
model of the streamwise (u) and spanwise (w) components
of the velocity field are shown in Fig. 3. It can be seen that
the model is able to provide good qualitative predictions of
the velocity field. This trained model is then coupled to the
m-AIA solver.

2DeepSpeed https://github.com/microsoft/DeepSpeed
3 AI4HPC https://ai4hpc. readthedocs. io/en/latest/
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Figure 3: Exemplary prediction (Output) from the transformer of TBL velocity field slice in the wall-normal direction on the i-k
plane, compared to the original LES field (Input), where i is the streamwise and k is the spanwise direction. In this case, Input
and Output refer to the LES-predicted and transformer-predicted velocity field at a future time-step.
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Figure 4: Coupling workflow between m-AlA and PhyDLL.

4. Coupling m-AIA with the transformer

Coupling m-AIA with the trained transformer is achieved
using the open-source “Physics Deep Learning coupLer”
(PhyDLL)*, which provides a coupling mechanism for
parallel physical solvers via the Message Passing Interface
(MPI) using the Multiple Program Multiple Data paradigm.
It establishes a mapping between processes running the
physical solver and processes via a user-defined DL Engine.
In this work, the DL Engine is a Python script, which imple-
ments the inference of the transformer. To communicate data
between the physical solver and the DL Engine, PhyDLL
offers a Fortran, C, and Python interface around MPI’s point-
to-point operations.

The coupling workflow is illustrated in Figure 4. In-
side m-AIA’s 3D structured solver (fvstructuredsolver3d),
u is passed to the mlCouplerPhyDLL as three one-dimensional
fields (u,v,w). This class is derived from an abstract class
following the popular strategy design pattern proposed by
Gamma et al. [9] to keep the solver independent from the
actual coupling algorithm. The mlCouplerPhyDLL uses Phy-
DLL’s API to send the flow fields to the DL Engine. First,

4PhyDLL https://phydll.readthedocs.io/en/latest

the 3D flow field is divided into cubic subdomains inside
the function extractCubes(). The DL Engine manages a ring
buffer, storing the data from the m most recent timesteps,
to construct sequences of cubic subdomains as input to the
transformer. After the input has been constructed, the infer-
ence of the transformer is implemented as proposed by Lud-
vigsen®. Multiple forward passes through the transformer are
performed to create a suitable target sequence of length n—m,
which the model can decode to make the final prediction.
Afterwards, the function combineCubes() combines the cubic
subdomains from the final prediction to form the full flow
field (&,0,0) again. The final predicted flow field is then sent
back to the mlCouplerPhyDLL of m-AIA using PhyDLL’s API.
Finally, the flow field in m-AIA is updated and the simulation
continues based on the transformer’s prediction.

5. Conclusions

The manuscript explored the use of a transformer model
to perform coupled predictions of TBL velocity fields with
the CFD solver m-AIA. For this, a transformer model is
trained with full velocity field data that is restructured into

5https ://github.com/KasperGroesLudvigsen/influenza_transformer


https://phydll.readthedocs.io/en/latest
https://github.com/KasperGroesLudvigsen/influenza_transformer

R. Sarma et al.: Predicting Turbulent Boundary Layer Flows Using Transformers Coupled to the Multi-Physics Simulation Tool m-AlA

smaller cubic sub-domains. The trained model, which shows
good qualitative agreement, is being coupled to the m-AIA
solver using the PhyDLL framework, which is an ongoing
work at the time of writing this abstract. Therefore, so far
qualitative analyses are performed based on the comparison
of outputs from the CFD solver and the transformer model.
The proposed methodology promises to accurately predict
turbulent fields, while significantly reducing the computa-
tional effort for time-marching TBL fields by reducing the
number of time-steps computed by the physical solver. For a
single time step, computational savings of upto 53 times was
possible during transformer inference, while also reducing
the memory consumption by 1,100 times. As an outlook for
the conference talk, quantitative analyses are performed to
assess the prediction accuracy also for the coupled configu-
rations and the speed-up compared to the stand-alone CFD
solver. Furthermore, the conservation properties (in terms
of mass and momentum) of the time-marched velocity fields
obtained through the interaction of the CFD solver and the
transformer model will be analyzed, and the imbalances will
be quantified in future work.
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