001     1041828
005     20250515202216.0
024 7 _ |a 10.34734/FZJ-2025-02460
|2 datacite_doi
024 7 _ |a 10.34734/FZJ-2025-02460
|2 doi
037 _ _ |a FZJ-2025-02460
041 _ _ |a English
100 1 _ |a Calmet, Hadrien
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 35th Parallel CFD International Conference 2024
|g ParCFD 2024
|c Bonn
|d 2024-09-02 - 2024-09-04
|w Germany
245 _ _ |a Creating a Virtual Population of the Human Nasal Cavity for Velocity-Based Predictions of Respiratory Flow Features Using Graph Convolutional Neural Networks
260 _ _ |a Jülich
|c 2025
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
295 1 0 |a Proceedings of the 35th Parallel CFD International Conference 2024
300 _ _ |a 80 - 83
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1747300072_12426
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Schriften des Forschungszentrums Jülich IAS Series
|v 69
520 _ _ |a GNNs can be applied to any shape or volume represented by a graph, e.g., triangulated shapes, or computational grids. Convolutional filters in GNNs operate on nodes and their neighboring nodes. This allows more efficient training compared to convolutional neural networks (CNNs), whose convolutional filters are rectangular and operate in Cartesian directions. The goal is to predict respiratory system flow features such as air resistance, wall shear stress, and energy flux within the human nasal cavity during inspiration. The initial step involves generating a virtual population through random scaling applied simultaneously to length, width, and height. Three distinct geometries are chosen to generate 297 virtual patients, including an average one based on 35 healthy patients, a Caucasian healthy patient, and an Asian healthy patient. The second part of the talk exposes the preliminary results based on 297 patients with physiological observations and discussions on the accuracy result of the GCNN model.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a RAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)
|0 G:(EU-Grant)951733
|c 951733
|f H2020-INFRAEDI-2019-1
|x 1
536 _ _ |a HANAMI - Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration (101136269)
|0 G:(EU-Grant)101136269
|c 101136269
|x 2
536 _ _ |a JLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708)
|0 G:(DE-Juel1)JLESC-20150708
|c JLESC-20150708
|f JLESC
|x 3
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Calafell, Joan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sarma, Rakesh
|0 P:(DE-Juel1)188513
|b 2
|u fzj
700 1 _ |a Rüttgers, Mario
|0 P:(DE-Juel1)177985
|b 3
|u fzj
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 4
|u fzj
700 1 _ |a Houzeaux, Guillaume
|0 P:(DE-HGF)0
|b 5
770 _ _ |z 978-3-95806-819-3
773 _ _ |a 10.34734/FZJ-2025-02460
856 4 _ |u https://juser.fz-juelich.de/record/1041828/files/172.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041828
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177985
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21