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A B S T R A C T

The impact of spanwise traveling transversal surface waves on drag reduction in turbulent compress-
ible flat plate flow is explored. The findings indicate that when the traveling phase speed approaches the
freestream velocity at 𝑀 = 0.7, a shock wave is induced in the spanwise direction. This shock wave
effectively breaks down streamwise vortices into smaller scales, which significantly enhances drag
reduction. The spanwise shock wave is a large-scale quasi-periodic phenomenon. To understand its
impact on the multi-scale nature of turbulent flows, a nonlinear mode decomposing deep convolutional
autoencoder is employed. The results show that the autoencoder reconstructs the flow field more
accurately compared to Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition
(DMD). Additionally, it effectively separates the large-scale spanwise shock wave and small-scale
turbulent structures, which achieves a clearer distinction than POD and DMD.

1. Introduction
In civil aviation, skin friction contributes significantly to

the total aerodynamic drag, accounting for up to 50% [1],
which leads to higher fuel consumption. Therefore, reducing
skin friction is paramount for environmental reasons. Drag
reduction techniques can be classified into two main groups:
active, e.g., spanwise wall oscillations [2] or spanwise trav-
eling waves [3], and passive methods, e.g., riblets [4]. While
the former requires an introduction of energy input, the
latter doesn’t depend on external energy. The basic idea of
spanwise traveling transversal surface waves is to introduce
a secondary flow field by introducing a wavy motion to the
surface, resulting in a drag reduction.

Combining the fast-emerging field of machine learning
(ML) and fluid dynamics shows great potential to enhance
the understanding of fluid dynamics, e.g., by predicting the
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resulting flow under different inlet conditions [5]. One com-
mon order reduction method is Proper Orthogonal Decom-
position (POD) introduced to the fluid-dynamics community
by Lumley in 1967 [6], which breaks the flow into different
modes for a deeper analysis. Although POD techniques
allow a reasonably good analysis of different modes in flow
fields, its ability to handle non-linear relations, which are
crucial aspects of turbulent flows, is limited [7]. Another
relatively novel method for analyzing nonlinear systems is
Dynamic Mode Decomposition (DMD) [8], which can be
interpreted as an extension to POD with an additional con-
sideration for the temporal aspects. However, DMD is also a
linear approximation, presenting challenges when analyzing
heavily nonlinear systems.

Artificial neural networks can overcome this obstacle
due to their ability to capture non-linearity. In [9], the so-
called Mode Decomposing Conventional Neural Network
Autoencoder (MD-CNN-AE) is employed for mode decom-
position. Although a conventional autoencoder uses only
one mode, increasing the number of decoder branches is
proven to improve learning and the capability to observe
more complex flow structures. The superiority of MD-CNN-
AE over POD is further shown in [10], where flow fields
around square cylinders under varying geometric conditions
are analyzed.

The current work extends the previous studies to the
turbulent compressible flat plate flow, which has a high
amount of non-linearity. That is, the effects of the surface
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Figure 1: Schematic of the spanwise traveling transversal surface waves setup. The function 𝑦|wall (𝑥, 𝑡) = 𝑔(𝑥)𝐴 cos
(

2𝜋
𝜆
(𝑧 − 𝑐𝑡)

)

defines the wall-normal motion. The quantity 𝐴 is the wave amplitude, 𝜆 is the wavelength, 𝑇 is the period, 𝑐 (= 𝜆∕𝑇 ) is the phase
speed, and 𝑔(𝑥) are step functions to manage a gradual spatial implementation and decay of the actuation in the 𝑥 direction.

actuation on the flow field are examined in detail including
a comparison between POD, DMD, and the MD-CNN-AE.

2. Methods
Turbulence scale-resolving numerical simulations for

actively controlled turbulent boundary layer flow are con-
ducted by the finite volume (FV) module of the in-house
multiphysics flow solver m-AIA (multiphysics Aerodynam-
ics Institute Aachen)1, formerly known as Zonal Flow Solver
(ZFS) [11]. An advanced numerical methodology is utilized
to precisely simulate the flow field over moving boundaries,
incorporating high-order discretization techniques and effec-
tive shock-capturing schemes. More details on the numerical
method are given in [12].

The flow domain is defined by the Cartesian coordinates
𝑥, 𝑦, and 𝑧 representing the streamwise, wall-normal, and
spanwise directions, illustrated in Fig. 1. The simulations are
done for a momentum thickness based REYNOLDS number
Re𝜃 = 𝑢∞𝜃

𝜈 = 1,000, with a momentum thickness of 𝜃 = 1
at location 𝑥1∕𝜃 = 165 and the freestream velocity 𝑢∞, and
𝑀 = 0.7. The domain size is defined by 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 =
361𝜃×101𝜃×64.94𝜃. The actuation parameters are specified
by wavelength 𝜆+, time period 𝑇 +, and amplitude 𝐴+ in
inner scaling based on the friction velocity 𝑢𝜏 and kinematic
viscosity 𝜈. The actuated parameter values are 𝜆+ = 3,000,
𝑇 + = 88, and 𝐴+ = 74.

As depicted in Fig. 2, the autoencoder follows a similar
structure of [9], where the encoder is followed by two mode-
decomposing decoder branches. The activation functions are
selected to be linear and tanh or ReLU for the convolutional
layers. The activation function is used in the intermediate
convolutional layers to handle non-linearities, whereas the

1https://doi.org/10.5281/zenodo.13350586

linear activation function is used at the final convolutional
layer. The 𝑦𝑧 planes at the center of the domain (𝑥∕𝜃 =
180), highlighted by the red rectangle in Fig. 1, are used
for training. In total, 9230 snapshots are used and the model
is trained for 2,000 epochs with the Adaptive Moment Es-
timation (Adam) [13] optimizer and a Mean Squared Er-
ror (MSE) loss function. The snapshots are randomly di-
vided into training and validation sets and PyTorch’s [14]
distributed data parallel is utilized for distributed training
on multiple GPUs. The parameters under investigation are
the three-dimensional velocity components (𝑢, 𝑣,𝑤) and the
pressure (𝑝).

3. Results
The vortex topology based on the 𝜆2 criterion and the

pressure contour in the 𝑦𝑧 plane is shown in Fig. 3. The
isosurfaces of the vortex structures are generated by 𝜆2 =
−0.02, colored by the relative MACH number defined by
𝑀rel =

√

𝑢2 + 𝑣2 + (𝑐 −𝑤)2∕
√

𝛾𝑝∕𝜌, where 𝛾 is the ratio
of specific heats, and 𝜌 is the density. At 𝑐 = 1.028 relative to
the stagnation sound speed a shock wave shown in Fig. 3(𝑏)
develops. The shock wave travels as the surface wave in the
positive 𝑧 direction. Within the shock wavefront, the vortices
experience a reduction in number and size, influenced by the
passing wave.

The reconstruction results for the autoencoder in com-
parison to the DMD and the POD with the 16 modes/16
decoders configuration for variables 𝑢, 𝑣,𝑤, 𝑝 are depicted
in Fig. 4. The results indicate the high capability of the
autoencoder relative to other methods, specifically in the
three areas, namely in reconstructing the shock, the flow in
the vicinity of the shock, and the turbulent structures. The
inability of POD to regenerate the turbulent structures is
an expected outcome as it heavily relies on linear spatial

https://doi.org/10.5281/zenodo.13350586
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Figure 2: General concept the MD-CNN-AE for predicting two modes.
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Figure 3: Instantaneous flow field for the non-actuated reference case (𝑎), and the actuated case (𝑏). Each illustration contains
an 𝑦𝑧 plane pressure contour at 𝑥∕𝜃 = 180 and a top view of the vortex topology in the streamwise direction and 𝑦+ < 60.

Figure 4: Original and reconstructed variables 𝑢, 𝑣,𝑤, 𝑝 for POD, DMD, and Autoencoder. The values are normalized by
(𝑎𝑖 − 𝑎𝑚𝑖𝑛)∕(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛), where 𝑎 represents the variables under investigation.
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Figure 5: Decoder and the mode outputs of the channel 𝑢 for the autoencoder and DMD for a 2 mode/decoder configuration.
The values are normalized by (𝑎𝑖 − 𝑎𝑚𝑖𝑛)∕(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛), where 𝑎 represents the channels under investigation.

Figure 6: Decoder outputs of an autoencoder configuration with 2 decoders for all variables 𝑢, 𝑣,𝑤, 𝑝. The values are normalized
by (𝑎𝑖 − 𝑎𝑚𝑖𝑛)∕(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛), where 𝑎 represents the variable under investigation.

patterns, making it an unsuitable method for an in-depth
analysis of turbulent flows. In contrast, DMD is able to
reconstruct small-scale structures, which can be linked to
its ability to consider the temporal dynamics of the system.
However, DMD also fails to reconstruct the shock accurately

as the shock wave is blurry, and the flow around the shock is
also not well presented.

The individual outputs of the 2 decoders for the autoen-
coder and 2 modes for the DMD for variable 𝑢 are shown
in Fig. 5. It can be concluded that the autoencoder separates
the shock and the turbulence in the flow, where the shock is
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completely reconstructed. On the contrary, the DMD is not
able to do this. The shock is vaguely represented and quite
blurry in mode 1 in Fig. 5. The POD results here were not
included as it was deemed an unfitting method, where the
turbulence was not captured in detail. The ability to sepa-
rate the large-scale shock waves and multi-scale turbulence
structures is not unique to variable 𝑢. The same separation
pattern exhibits in 𝑣,𝑤, 𝑝.

The decoder results for all variables are shown in Fig. 6.
In each velocity channel, decoder 1 captures the large-
scale structures associated with the shock, whereas decoder
2 captures the multi-scale turbulence. On the other hand,
only the large-scale structures are captured in the pressure
channel, whereas decoder 2 does not output anything. This
is affiliated with the nature of the pressure characteristics,
which do not possess fluctuating turbulence.

In conclusion, the mode decomposing autoencoder can
capture the shock and the high-frequency turbulent fluctu-
ations accurately compared to the conventional methods,
i.e., Proper Orthogonal Decomposition (POD) and Dynamic
Mode Decomposition (DMD). Moreover, the autoencoder
can separate large-scale shock waves from multi-scale tur-
bulence structures, which results in a continuous turbulence
flow field. Clear decomposition makes it possible to examine
the alter of turbulence structures due to the shock wave.

References
[1] P. Ricco, M. Skote, M. A. Leschziner, A review of turbulent

skin-friction drag reduction by near-wall transverse forcing,
Progress in Aerospace Sciences 123 (2021) 100713. doi:

10.1016/j.paerosci.2021.100713.
[2] W. J. Jung, N. Mangiavacchi, R. Akhavan, Suppression of tur-

bulence in wall-bounded flows by high-frequency spanwise
oscillations, Physics of Fluids A: Fluid Dynamics 4 (8) (1992)
1605–1607. doi:10.1063/1.858381.

[3] M. Itoh, S. Tamano, K. Yokota, S. Taniguchi, Drag reduction
in a turbulent boundary layer on a flexible sheet undergoing a
spanwise traveling wave motion, Journal of Turbulence 7 (27)
(2006) 27. doi:10.1080/14685240600647064.

[4] M. Walsh, Turbulent boundary layer drag reduction using
riblets, in: 20th Aerospace Sciences Meeting, American Insti-
tute of Aeronautics and Astronautics, Reston, Virigina, 1982.
doi:10.2514/6.1982-169.

[5] J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged
turbulence modelling using deep neural networks with em-
bedded invariance, Journal of Fluid Mechanics 807 (2016)
155–166. doi:10.1017/jfm.2016.615.

[6] J. L. Lumley, The structure of inhomogeneous turbulent
flows, Atmospheric Turbulence and Radio Wave Propagation
(1967) 166–178.
URL https://cir.nii.ac.jp/crid/1574231874542771712

[7] S. L. Brunton, B. R. Noack, P. Koumoutsakos, Machine learn-
ing for fluid mechanics, Annual Review of Fluid Mechanics
52 (2020) 477–508. doi:10.1146/annurev-fluid-010719-060

214.
[8] P. J. Schmid, Dynamic mode decomposition of numerical and

experimental data, Journal of fluid mechanics 656 (2010) 5–
28. doi:10.1017/S0022112010001217.

[9] T. Murata, K. Fukami, K. Fukagata, Nonlinear mode decom-
position with convolutional neural networks for fluid dynam-
ics, Journal of Fluid Mechanics 882 (2020). doi:10.1017/jf

m.2019.822.
[10] A. Higashida, K. Ando, M. Rüttgers, A. Lintermann,

M. Tsubokura, Robustness evaluation of large-scale machine
learning-based reduced order models for reproducing flow
fields, Future Generation Computer Systems 159 (2024) 243–
254. doi:10.1016/j.future.2024.05.005.

[11] A. Lintermann, M. Meinke, W. Schröder, Zonal Flow Solver
(ZFS): a highly efficient multi-physics simulation frame-
work, International Journal of Computational Fluid Dynam-
ics 34 (7-8) (2020) 458–485. doi:10.1080/10618562.2020.17

42328.
[12] M. Albers, P. S. Meysonnat, D. Fernex, R. Semaan, B. R.

Noack, W. Schröder, Drag reduction and energy saving by
spanwise traveling transversal surface waves for flat plate
flow, Flow, Turbulence and Combustion 105 (1) (2020) 125–
157. doi:10.1007/s10494-020-00110-8.

[13] D. P. Kingma, J. Ba, Adam: A method for stochastic optimiza-
tion (2017). arXiv:1412.6980.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, S. Chintala, PyTorch: An Imperative Style, High-
Performance Deep Learning Library, in: Advances in Neural
Information Processing Systems 32, Curran Associates, Inc.,
2019, pp. 8024–8035.
URL http://papers.neurips.cc/paper/9015-pytorch-an-imp

erative-style-high-performance-deep-learning-library.pdf

https://doi.org/10.1016/j.paerosci.2021.100713
https://doi.org/10.1016/j.paerosci.2021.100713
https://doi.org/10.1063/1.858381
https://doi.org/10.1080/14685240600647064
https://doi.org/10.2514/6.1982-169
https://doi.org/10.1017/jfm.2016.615
https://cir.nii.ac.jp/crid/1574231874542771712
https://cir.nii.ac.jp/crid/1574231874542771712
https://cir.nii.ac.jp/crid/1574231874542771712
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/jfm.2019.822
https://doi.org/10.1017/jfm.2019.822
https://doi.org/10.1016/j.future.2024.05.005
https://doi.org/10.1080/10618562.2020.1742328
https://doi.org/10.1080/10618562.2020.1742328
https://doi.org/10.1007/s10494-020-00110-8
http://arxiv.org/abs/1412.6980
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

