001042282 001__ 1042282
001042282 005__ 20250514202227.0
001042282 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02498
001042282 037__ $$aFZJ-2025-02498
001042282 041__ $$aEnglish
001042282 1001_ $$0P:(DE-HGF)0$$aKavari, Hamid$$b0$$eCorresponding author
001042282 1112_ $$a35th Parallel CFD International Conference 2024$$cBonn$$d2024-09-02 - 2024-09-04$$gParCFD 2024$$wGermany
001042282 245__ $$aDNS of Intrinsically Unstable 3D Flames Using Deficient Reactant Thermochemistry: Validation and Scaling in NekRS
001042282 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2025
001042282 29510 $$aProceedings of the 35th Parallel CFD International Conference 2024
001042282 300__ $$a235 - 237
001042282 3367_ $$2ORCID$$aCONFERENCE_PAPER
001042282 3367_ $$033$$2EndNote$$aConference Paper
001042282 3367_ $$2BibTeX$$aINPROCEEDINGS
001042282 3367_ $$2DRIVER$$aconferenceObject
001042282 3367_ $$2DataCite$$aOutput Types/Conference Paper
001042282 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1747043541_27876
001042282 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001042282 4900_ $$aSchriften des Forschungszentrums Jülich IAS Series$$v69
001042282 520__ $$aUnderstanding the intrinsic instabilities of hydrogen flames is crucial for achieving net zero emissions. Direct Numerical Simulation (DNS) serves as a pivotal tool for this purpose, despite its high computational cost. With advancements in High Performance Computing (HPC) shifting towards GPUs, the deficient reactant model has been integrated into the NekRS framework to improve efficiency. This study validates the deficient reactant thermochemical model within the low-Mach number governing equations in NekRS. In addition, we present the strong scaling performance of this implementation.
001042282 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001042282 536__ $$0G:(EU-Grant)730897$$aHPC-EUROPA3 - Transnational Access Programme for a Pan-European Network of HPC Research Infrastructures and Laboratories for scientific computing (730897)$$c730897$$fH2020-INFRAIA-2016-1$$x1
001042282 7001_ $$0P:(DE-HGF)0$$aLapenna, Pasquale Eduardo$$b1
001042282 7001_ $$0P:(DE-Juel1)192255$$aBode, Mathis$$b2$$ufzj
001042282 773__ $$a10.34734/FZJ-2025-02498
001042282 8564_ $$uhttps://juser.fz-juelich.de/record/1042282/files/136.pdf$$yOpenAccess
001042282 909CO $$ooai:juser.fz-juelich.de:1042282$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001042282 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042282 9141_ $$y2025
001042282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192255$$aForschungszentrum Jülich$$b2$$kFZJ
001042282 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001042282 920__ $$lyes
001042282 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001042282 980__ $$acontrib
001042282 980__ $$aVDB
001042282 980__ $$acontb
001042282 980__ $$aI:(DE-Juel1)JSC-20090406
001042282 980__ $$aUNRESTRICTED
001042282 9801_ $$aFullTexts