001     1042282
005     20250514202227.0
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-02498
037 _ _ |a FZJ-2025-02498
041 _ _ |a English
100 1 _ |0 P:(DE-HGF)0
|a Kavari, Hamid
|b 0
|e Corresponding author
111 2 _ |a 35th Parallel CFD International Conference 2024
|c Bonn
|d 2024-09-02 - 2024-09-04
|g ParCFD 2024
|w Germany
245 _ _ |a DNS of Intrinsically Unstable 3D Flames Using Deficient Reactant Thermochemistry: Validation and Scaling in NekRS
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2025
295 1 0 |a Proceedings of the 35th Parallel CFD International Conference 2024
300 _ _ |a 235 - 237
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1747043541_27876
336 7 _ |0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|a Contribution to a book
|m contb
490 0 _ |a Schriften des Forschungszentrums Jülich IAS Series
|v 69
520 _ _ |a Understanding the intrinsic instabilities of hydrogen flames is crucial for achieving net zero emissions. Direct Numerical Simulation (DNS) serves as a pivotal tool for this purpose, despite its high computational cost. With advancements in High Performance Computing (HPC) shifting towards GPUs, the deficient reactant model has been integrated into the NekRS framework to improve efficiency. This study validates the deficient reactant thermochemical model within the low-Mach number governing equations in NekRS. In addition, we present the strong scaling performance of this implementation.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(EU-Grant)730897
|a HPC-EUROPA3 - Transnational Access Programme for a Pan-European Network of HPC Research Infrastructures and Laboratories for scientific computing (730897)
|c 730897
|f H2020-INFRAIA-2016-1
|x 1
700 1 _ |0 P:(DE-HGF)0
|a Lapenna, Pasquale Eduardo
|b 1
700 1 _ |0 P:(DE-Juel1)192255
|a Bode, Mathis
|b 2
|u fzj
773 _ _ |a 10.34734/FZJ-2025-02498
856 4 _ |u https://juser.fz-juelich.de/record/1042282/files/136.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042282
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)192255
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2025
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21