| Hauptseite > Publikationsdatenbank > DNS of Intrinsically Unstable 3D Flames Using Deficient Reactant Thermochemistry: Validation and Scaling in NekRS > print | 
| 001 | 1042282 | ||
| 005 | 20250514202227.0 | ||
| 024 | 7 | _ | |2 datacite_doi |a 10.34734/FZJ-2025-02498 | 
| 037 | _ | _ | |a FZJ-2025-02498 | 
| 041 | _ | _ | |a English | 
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Kavari, Hamid |b 0 |e Corresponding author | 
| 111 | 2 | _ | |a 35th Parallel CFD International Conference 2024 |c Bonn |d 2024-09-02 - 2024-09-04 |g ParCFD 2024 |w Germany | 
| 245 | _ | _ | |a DNS of Intrinsically Unstable 3D Flames Using Deficient Reactant Thermochemistry: Validation and Scaling in NekRS | 
| 260 | _ | _ | |a Jülich |b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag |c 2025 | 
| 295 | 1 | 0 | |a Proceedings of the 35th Parallel CFD International Conference 2024 | 
| 300 | _ | _ | |a 235 - 237 | 
| 336 | 7 | _ | |2 ORCID |a CONFERENCE_PAPER | 
| 336 | 7 | _ | |0 33 |2 EndNote |a Conference Paper | 
| 336 | 7 | _ | |2 BibTeX |a INPROCEEDINGS | 
| 336 | 7 | _ | |2 DRIVER |a conferenceObject | 
| 336 | 7 | _ | |2 DataCite |a Output Types/Conference Paper | 
| 336 | 7 | _ | |0 PUB:(DE-HGF)8 |2 PUB:(DE-HGF) |a Contribution to a conference proceedings |b contrib |m contrib |s 1747043541_27876 | 
| 336 | 7 | _ | |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |a Contribution to a book |m contb | 
| 490 | 0 | _ | |a Schriften des Forschungszentrums Jülich IAS Series |v 69 | 
| 520 | _ | _ | |a Understanding the intrinsic instabilities of hydrogen flames is crucial for achieving net zero emissions. Direct Numerical Simulation (DNS) serves as a pivotal tool for this purpose, despite its high computational cost. With advancements in High Performance Computing (HPC) shifting towards GPUs, the deficient reactant model has been integrated into the NekRS framework to improve efficiency. This study validates the deficient reactant thermochemical model within the low-Mach number governing equations in NekRS. In addition, we present the strong scaling performance of this implementation. | 
| 536 | _ | _ | |0 G:(DE-HGF)POF4-5111 |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 0 | 
| 536 | _ | _ | |0 G:(EU-Grant)730897 |a HPC-EUROPA3 - Transnational Access Programme for a Pan-European Network of HPC Research Infrastructures and Laboratories for scientific computing (730897) |c 730897 |f H2020-INFRAIA-2016-1 |x 1 | 
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Lapenna, Pasquale Eduardo |b 1 | 
| 700 | 1 | _ | |0 P:(DE-Juel1)192255 |a Bode, Mathis |b 2 |u fzj | 
| 773 | _ | _ | |a 10.34734/FZJ-2025-02498 | 
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1042282/files/136.pdf |y OpenAccess | 
| 909 | C | O | |o oai:juser.fz-juelich.de:1042282 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery | 
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)192255 |a Forschungszentrum Jülich |b 2 |k FZJ | 
| 913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5111 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 | 
| 914 | 1 | _ | |y 2025 | 
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess | 
| 920 | _ | _ | |l yes | 
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 | 
| 980 | _ | _ | |a contrib | 
| 980 | _ | _ | |a VDB | 
| 980 | _ | _ | |a contb | 
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 | 
| 980 | _ | _ | |a UNRESTRICTED | 
| 980 | 1 | _ | |a FullTexts | 
| Library | Collection | CLSMajor | CLSMinor | Language | Author | 
|---|