001042284 001__ 1042284
001042284 005__ 20250514202227.0
001042284 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02500
001042284 037__ $$aFZJ-2025-02500
001042284 041__ $$aEnglish
001042284 1001_ $$0P:(DE-Juel1)168541$$aGöbbert, Jens Henrik$$b0$$eCorresponding author$$ufzj
001042284 1112_ $$a35th Parallel CFD International Conference 2024$$cBonn$$d2024-09-02 - 2024-09-04$$gParCFD 2024$$wGermany
001042284 245__ $$aIn-Situ Visualization With Ascent and NekRS for Large-Scale CFD Problems on GPUs
001042284 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2025
001042284 29510 $$aProceedings of the 35th Parallel CFD International Conference 2024
001042284 300__ $$a241 - 244
001042284 3367_ $$2ORCID$$aCONFERENCE_PAPER
001042284 3367_ $$033$$2EndNote$$aConference Paper
001042284 3367_ $$2BibTeX$$aINPROCEEDINGS
001042284 3367_ $$2DRIVER$$aconferenceObject
001042284 3367_ $$2DataCite$$aOutput Types/Conference Paper
001042284 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1747203500_10113
001042284 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001042284 4900_ $$aSchriften des Forschungszentrums Jülich IAS Series$$v69
001042284 520__ $$aThis paper discusses in-situ visualization in the context of high-order GPU-based CFD solvers. For this purpose, ASCENT was coupled with NekRS and successfully used on JUWELS Booster and Frontier to visualize CFD applications, a Rayleigh-Bénard convection case and a Pebble Bed reactor, at scale. The setup allowed time-resolved visualization at low additional computational cost.
001042284 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001042284 536__ $$0G:(EU-Grant)952181$$aCoEC - Center of Excellence in Combustion (952181)$$c952181$$fH2020-INFRAEDI-2019-1$$x1
001042284 588__ $$aDataset connected to DataCite
001042284 7001_ $$0P:(DE-Juel1)144660$$aAlvarez, Damian$$b1$$ufzj
001042284 7001_ $$0P:(DE-Juel1)192255$$aBode, Mathis$$b2$$ufzj
001042284 7001_ $$0P:(DE-Juel1)191562$$aFischer, Paul$$b3$$ufzj
001042284 7001_ $$0P:(DE-HGF)0$$aFrouzakis, Christos Emmanouil$$b4
001042284 7001_ $$0P:(DE-HGF)0$$aInsley, Joseph A.$$b5
001042284 7001_ $$0P:(DE-HGF)0$$aLan, Yu-Hsiang$$b6
001042284 7001_ $$0P:(DE-HGF)0$$aMateevitsi, Victor A.$$b7
001042284 7001_ $$0P:(DE-HGF)0$$aMin, Misun$$b8
001042284 7001_ $$0P:(DE-HGF)0$$aPapka, Michael E.$$b9
001042284 7001_ $$0P:(DE-HGF)0$$aRizzi, Silvio$$b10
001042284 7001_ $$0P:(DE-HGF)0$$aSamuel, Roshan J.$$b11
001042284 7001_ $$0P:(DE-HGF)0$$aSchumacher, Jörg$$b12
001042284 770__ $$z978-3-95806-819-3
001042284 773__ $$a10.34734/FZJ-2025-25000
001042284 8564_ $$uhttps://juser.fz-juelich.de/record/1042284/files/153.pdf$$yOpenAccess
001042284 909CO $$ooai:juser.fz-juelich.de:1042284$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001042284 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042284 9141_ $$y2025
001042284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168541$$aForschungszentrum Jülich$$b0$$kFZJ
001042284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144660$$aForschungszentrum Jülich$$b1$$kFZJ
001042284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192255$$aForschungszentrum Jülich$$b2$$kFZJ
001042284 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191562$$aForschungszentrum Jülich$$b3$$kFZJ
001042284 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001042284 920__ $$lyes
001042284 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001042284 980__ $$acontrib
001042284 980__ $$aVDB
001042284 980__ $$aUNRESTRICTED
001042284 980__ $$acontb
001042284 980__ $$aI:(DE-Juel1)JSC-20090406
001042284 9801_ $$aFullTexts