
ParCFD2024
35𝑡ℎ International Conference on Parallel Computational Fluid Dynamics

Sep. 02-04, 2024, Bonn, Germany

Portable Linear Solvers for High-Order Spectral Element Methods
on GPUs
Yu-Hsiang M. Tsaia, Gregor Olenika,b, Andreas Hertenc, Mathis Bodec and Hartwig Anzta,∗

aTechnical University of Munich (TUM), School of Computation, Information and Technology, Bildungscampus 2, 74076 Heilbronn, Germany
bKarlsruhe Institute of Technology (KIT), Scientific Computing Center (SCC), Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany
cForschungszentrum Jülich GmbH, Jülich Supercomputing Centre (JSC), Wilhelm-Johnen-Straße, 52428 Jülich, Germany

A R T I C L E I N F O†

Keywords:
Spectral Element Methods;
Graphics Processing Unit Offloading;
Linear Solver;
Platform Portability

A B S T R A C T

The diversification in hardware architectures has become a challenge for computational science:
software stacks implemented for a specific hardware architecture often fail to port to other systems.
To counter this problem, simulation software stacks increasingly rely on portability layers or software
stacks that feature backends for different hardware architectures. We present Ginkgo, a math library
that takes platform portability as a central design principle and can be used for numerical calculations
in the nekRS CFD code. A runtime and scalability analysis for CFD applications demonstrates that
Ginkgo enables platform portability at high performance and scalability.

1. Introduction
In the latest TOP500 list1 ranking the fastest supercom-

puters, only one of the fastest ten systems does not feature
GPUs. But while the trend incorporating GPU accelerators
into the HPC systems is universal, the community still strug-
gles to agree on a universal programming language to imple-
ment software for the GPUs of the different vendors. Instead,
each vendor supports their own programming ecosystem, of-
ten hindering or even blocking portability of software stacks.
At the same time, it is impossible for scientific software
stacks to develop and maintain multiple versions targeting
different hardware architectures. Simulation software stacks
currently implement two strategies to tackle the hardware
diversification: the use of a portability layer and the use of
portable software components. The use of a portability layer
requires the rewrite of the simulation software in a portable
programming language that can then be compiled for differ-
ent hardware architectures. Examples for portability layers

†This paper is part of the ParCFD 2024 Proceedings. A recording
of the presentation is available on YouTube. The DOI of this document
is 10.34734/FZJ-2025-02503 and of the Proceedings 10.34734/FZJ-2025-
02175.

∗Corresponding author
yu-hsiang.tsai@tum.de (Y.M. Tsai); gregor.olenik@tum.de (G.

Olenik); a.herten@fz-juelich.de (A. Herten); m.bode@fz-juelich.de (M.
Bode); hartwig.anzt@tum.de (H. Anzt)

ORCID(s): 0000-0001-5229-3739 (Y.M. Tsai); 0000-0002-0128-3933 (G.
Olenik); 0000-0002-7150-2505 (A. Herten); 0000-0001-9922-9742 (M. Bode);
0000-0003-2177-952X (H. Anzt)

1Top500 as of 06/2024 https://www.top500.org/lists/top500/2024/06/

are the SYCL abstraction2, Kokkos3, RAJA4, and OCCA5,
cf. [1]. Using a portable language enables execution on the
architectures that support the portability layer. A disadvan-
tage is that a portability layer has to trade specialization
against generalization, and thus can never exploit the latest
features of a specific hardware that are not available on other
hardware. Hence, a portability layer typically pays some
performance penalty to enable the execution on a wide range
of hardware. The second approach is to utilize software com-
ponents that are more limited in functionality, i.e., can not
be used for the complete simulation code, but provide high
performance on a range of architectures. A viable strategy
is to identify the computationally most expensive building
blocks in the simulation code, e.g., the numerical compu-
tations, and rely on specialized platform-portable libraries
for these building blocks. Obviously, the two strategies can
also be used in combination: a portability layer enables the
execution on a wide range of hardware, a dedicated library
ensures high performance for the most expensive building
blocks of the simulation code. We here present how the
Ginkgo math library can be used to accelerate computational
fluid simulations on GPU-accelerated systems. In particular,
we demonstrate that the nekRS CFD solver can benefit from
using Ginkgo for solving the underlying linear equations by
new solver options and platform portability.

2SYCL https://www.khronos.org/sycl/
3Kokkos https://kokkos.github.io
4RAJA https://raja.readthedocs.io
5OCCA https://github.com/libocca/occa

https://youtu.be/e73tWLuUlJM
https://doi.org/10.34734/FZJ-2025-02503
https://doi.org/10.34734/FZJ-2025-02175
https://doi.org/10.34734/FZJ-2025-02175
https://www.top500.org/lists/top500/2024/06/
https://www.khronos.org/sycl/
https://kokkos.github.io
https://raja.readthedocs.io
https://github.com/libocca/occa


Y. M. Tsai et al.: Portable Linear Solvers for High-Order Spectral Element Methods on GPUs

Figure 1: Overview of the Ginkgo library design using the backend model for platform portability [2].

Listing 1: Using Ginkgo as the coarse solver and set the ginkgo
solver from the config.json file.

1 [PRESSURE]

2 preconditioner = multigrid

3 coarseSolver = ginkgo

4 [GINKGO]

5 configFile = config.json

Listing 2: Configuration file for selecting the numerical meth-
ods and configuring the parameters.

1 {

2 "type": "solver::Cg",

3 "criteria": [

4 {"type": "Iteration", "max_iters": 4},

5 {"type": "ImplicitResidualNorm",

6 "reduction_factor": 1e-4,

7 "baseline": "initial_resnorm"}

8 ]

9 }

2. The nekRS and Ginkgo software packages
The nekRS framework6 [3] is a CFD solver based on

libParanumal7 [4] and Nek50008. It is implemented in C
and C++ including Fortran bindings for Nek5000 and uses
an MPI + OCCA approach for parallelization, where OCCA
acts like a language translator without overhead associated
to it during runtime. Numerically, it relies on the spectral
element method (SEM), which makes it well suited for the
efficient simulation of turbulence, where the number of grid

6nekRS https://github.com/Nek5000/nekRS
7libParanumal https://github.com/paranumal/libparanumal
8Nek5000 https://github.com/Nek5000/Nek5000

points grows faster than quadratically with the REYNOLDS
number when all flow features must be resolved.

Ginkgo is a software library developed under the US
Exascale Computing Project (ECP) that focuses on the ef-
ficient handling of sparse linear systems on GPUs. Ginkgo
is implemented in modern C++ to accommodate a large
number of scientific application codes. The software features
multiple backends in hardware-native languages: CUDA for
NVIDIA GPUs, HIP for AMD GPUs, and SYCL for Intel
GPUs. Ginkgo contains a set of iterative solvers, including
Krylov solvers, algebraic multigrid (AMG), and parallel
preconditioners that serve as a valuable toolbox for appli-
cation codes. Ginkgo aims to provide not only functional
portability but also performance portability [2]. To achieve
this, Ginkgo uses a backend model that lifts portability to the
software design level. The idea is to rely on a set of kernels
implemented using vendor-native programming models, for
each hardware target [2]. These kernels are then used to
implement the high-level algorithms. This is reflected in
Fig. 1 visualizing the backend model used in the Ginkgo
library design9.

Ginkgo provides a wide range of numerical methods for
the solution of sparse linear systems, see [2] for an overview
of functionality supported by Ginkgo on different hardware.
While there are some solvers and preconditioners known
to provide good performance for a wide range of nekRS
simulations, it is of interest to test a large variety of methods
and configuration parameters to identify the best method for
a specific simulation. To enable the easy and fast analysis of
a wide range of numerical methods, we enabled the use of
configuration files that use JSON to encode solver and pa-
rameter configurations, The example configuration in Lst. 1

9Ginkgo uses SYCL as one of its backends, which is a portability layer
in itself.

https://github.com/Nek5000/nekRS
https://github.com/paranumal/ libparanumal
https://github.com/Nek5000/Nek5000


Y. M. Tsai et al.: Portable Linear Solvers for High-Order Spectral Element Methods on GPUs

Solver CG(4 iter) BiCGstab(4 iter) BiCGstab(20 iter) GMRES(20 iter)
#coarseSolver 44 41 37 38
runtime[s] 2.03469e-01 3.02990e-01 3.80737e-01 6.32582e-01

Table 1
Performance of different solver settings of GABLS test case with 32 elements per each axis.

Figure 2: Runtime of the coarse solver on the GABLS test case
using different discretizations (16, 32, and 64 elements in each
dimension) on 2 machine nodes (8 A100 GPUs/MPI nodes).

enables ginkgo in nekRS with the configuration file. This
concept avoids any compilation of the code, but exclusively
works with already compiled libraries. An example for a
configuration file is given in Lst. 2. We can try different
kinds of solver like CG, BiCGstab, and GMRES or use more
iterations in Tab. 1.

3. Preliminary experiments on integration
For testing the correctness, performance and scalability

of the integration of the Ginkgo backend, we focus on
the GABLS test case that was established by the atmo-
spheric boundary layer community and is an acronym for
the GEWEX (Global Energy and Water Cycle Experiment)
Atmospheric Boundary Layer Study (GABLS). It is used to
quantify the effects of numerical modeling and discretization
choices. We initially fix the computational resources to 8
NVIDIA A100 GPUs in two nodes of the Jureca supercom-
puter and vary the discretization of the unit cube from 163 to
643. For the different discretizations, we visualize in Fig. 2
the Ginkgo coarse grid solver runtime used in a four level
multigrid. We observe an only mild increase in the coarse
grid solver runtime for the increasing coarse grid problem
sizes. We next investigate the strong and weak scalability
of the nekRS simulation using Ginkgo for the numerical
computations. We analyze the solving time from 3,000-th
time step to 3,100-th time step of the nekRS simulation using
the 643 discretization on 4, 7, and 14 physical nodes (16, 28,

#nodes (x4 = #gpus)
so

lv
in

g 
tim

e 
of

 1
00

 s
te

p 
[s

]

7.0E+0

9.0E+0

20.0E+0

30.0E+0

4 6 8 10

ginkgo_cg ginkgo_mg_cg smoother ideal

GABLS_64 - performance

(a) The performance of GABLS with 64 elements in each dimension
on 4, 7, and 14 physical nodes.

#nodes (x4 = #gpus)

so
lv

in
g 

tim
e 

of
 1

00
 s

te
ps

 

9.0E+0

20.0E+0

30.0E+0

40.0E+0
50.0E+0

40 60 80 100

ginkgo_cg smoother ginkngo_mg_cg ideal

GABLS_128 - performance

(b) The performance of GABLS with 128 elements in each dimension
on 28, 55, and 110 physical nodes.

Figure 3: Performance of GABL: solving time.

and 56 GPUs respectively ) in Fig. 3a and 1283 discretization
on 28, 55, and 110 physical nodes (112, 220, and 440 GPUs
respectively) in Fig. 3b with Ginkgo’s CG, algebraic Multi-
grid with CG as coarse solver, and OCCA smoother. In these
two cases, CG from ginkgo can get 1.1x speedup against
smoother from nekRS. We choose the number of nodes in
Fig. 3a and Fig. 3b such that the averaged local sizes are the
same between two cases and we can have weak scalability
plot in Fig. 4a. We focus the weak scaling efficiency between
Ginkgo CG and nekRS smoother in Fig. 4a. Ginkgo CG
only performs slightly better weak scalability from GABLS
(643) on 4 nodes to GABLS (1283) on 28 nodes than nekRS



Y. M. Tsai et al.: Portable Linear Solvers for High-Order Spectral Element Methods on GPUs

0.00

0.20

0.40

0.60

0.80

ginkgo_cg smoother

14 nodes -> 110 nodes 7 nodes -> 55 nodes 4 nodes -> 28 nodes

GABLS weak scaling efficiency

(a) The weak scaling efficiency of Ginkgo CG and nekRS smoother
between GABLS with 64 and 128 elements in each dimension. We
choose the number of nodes between the two cases to make the
averaged local size the same.

(b) Solving time of GABLS (16 elements in each dimension) on 2,
4, and 8 AMD MI100 in one machine. It is our self-host machine,
so the performance and scaling behavior may be changed in the
supercomputer.

Figure 4: Performance of GABLS: weak scaling and solving time on AMD MI100.

smoother, but other cases are quite similar. This preliminary
experiments shows that the new ginkgo integration keeps the
scalability of nekRS and brings the new solver options to
nekRS. Moreover, we run the GABLS with 16 elements in
each dimensions on 2, 4, and 8 AMD MI100 GPUs to show
the portability of Ginkgo with nekRS in Fig. 4b.

Acknowledgements
This research is supported by the Inno4Scale project un-

der Inno4scale-202301-099. Inno4Scale has received fund-
ing from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 101118139.
The JU receives support from the European Union’s Horizon
Europe Programme. The authors acknowledge the Gauss
Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time on the
GCS Supercomputers at Jülich Supercomputing Centre (JSC).

References
[1] W. F. Godoy, P. Valero-Lara, T. E. Dettling, C. Trefftz, I. Jor-

quera, T. Sheehy, R. G. Miller, M. Gonzalez-Tallada, J. S.
Vetter, V. Churavy, Evaluating performance and portability
of high-level programming models: Julia, Python/Numba, and
Kokkos on exascale nodes (2023). doi:10.48550/arXiv.2303.

06195.
[2] T. Cojean, Y.-H. M. Tsai, H. Anzt, Ginkgo—A math library de-

signed for platform portability, Parallel Computing 111 (2022)
102902. doi:10.1016/j.parco.2022.102902.

[3] P. Fischer, S. Kerkemeier, M. Min, Y.-H. Lan, M. Phillips,
T. Rathnayake, E. Merzari, A. Tomboulides, A. Karakus,

N. Chalmers, T. Warburton, NekRS, a GPU-accelerated spec-
tral element Navier–Stokes solver, Parallel Computing 114
(2022) 102982. doi:10.1016/j.parco.2022.102982.

[4] N. Chalmers, A. Karakus, A. P. Austin, K. Swirydowicz,
T. Warburton, libParanumal: a performance portable high-
order finite element library, release 0.5.0 (2022). doi:10.5281/
zenodo.4004744.

www.gauss-centre.eu
https://doi.org/10.48550/arXiv.2303.06195
https://doi.org/10.48550/arXiv.2303.06195
https://doi.org/10.1016/j.parco.2022.102902
https://doi.org/10.1016/j.parco.2022.102982
https://doi.org/10.5281/zenodo.4004744
https://doi.org/10.5281/zenodo.4004744

