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A B S T R A C T

In this work, spectral deferred corrections (SDC) methods are considered as parallel-in-time integra-
tors for the solution of the unsteady incompressible Navier-Stokes equations. These temporal methods
are coupled with a high-order finite element spatial approximation. The goal of this work is to illustrate
and analyze the properties of the parallel-in-time method through numerical experiments, including
flow past a cylinder (using the standard DFG 2D-3 benchmark) which is selected as an example of
unsteady flow.

1. Introduction
The numerical simulation of the Navier-Stokes equations

(NSE) in the primitive formulation for incompressible flow
is an active research topic. Yet, the challenge of accurately
resolving these equations in both space and time necessitates
the deployment of advanced high-performance computing
systems. While spatial parallelization can reduce the runtime
per time step, temporal integration of time-sensitive applica-
tions often requires a large number of time steps. Therefore,
for further speedup, parallel-in-time integrators are required
for more parallelism in the temporal domain. One of the time
integrators that can be used to enable efficient parallel-in-
time integration is the spectral deferred corrections methods
introduced in 2000 by Dutt et al. [1], as a more stable variant
of the classical deferred corrections approach for solving
ordinary differential equations (ODEs). SDC are an iterative
approach for the numerical solution of ordinary differential
equations. It works by refining the numerical solution for an
initial value problem by performing a series of correction
sweeps using a low-order time-stepping method, and can
be interpreted as a preconditioned Picard iteration to solve
a fully implicit collocation problem. SDC has been widely
used for various initial value problems, using explicit, im-
plicit or implicit-explicit Euler and other low-order methods
as preconditioner [2, 3, 4, 5]. Moreover, two strategies to
enable parallelization across the method for spectral deferred
corrections are presented by R. Speck [6]. In this work the
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SDC methods implemented in pySDC [7] are combined
with the finite element method (FEM), as facilitated by the
frameworks FEniCS providing a powerful tool for computa-
tional fluid dynamics applications. FEM excels at accurately
representing complex geometries and boundary conditions,
making it an ideal choice for spatial discretization. This
coupling results in a robust and accurate numerical solution
to the Navier-Stokes equations, benefiting from the parallel
computing capabilities of both methods.

2. SDC for Navier-Stokes
Let Ω ⊂ ℝ𝑑 be a bounded domain with the boundary 𝜕Ω

and [0, 𝑇 ] is a time interval. The governing equations consist
of the incompressible Navier-Stokes equations

{𝜕𝐮
𝜕𝑡

= −𝐮 ⋅ ∇𝐮 − ∇𝑝 + 𝜈∇2𝐮 + 𝐠,
∇ ⋅ 𝐮 = 0,

(1)

where 𝐮 is the velocity vector, 𝑝 is the pressure, 𝜈 is the
kinematic viscosity, and 𝐠 represents external forces. To
solve these equations, we begin by subdividing the time
interval into sub-intervals [𝑡𝑛, 𝑡𝑛+1]. Then, using Chorin’s
projection scheme, we first compute an intermediate velocity
field 𝐮∗ with the momentum equation

⎧

⎪

⎨

⎪

⎩

𝐮∗ − 𝐮𝑛
Δ𝑡

= −𝐮𝑛 ⋅ ∇𝐮𝑛 + 𝜈∇2𝐮∗ + 𝐠𝑛+1,
𝑢∗ = 0 on 𝜕Ω.

(2)

In the next step, the intermediate velocity is projected to the
space of divergence free vector fields to get the next update
of velocity and pressure

𝐮𝑛+1 − 𝐮∗ = −Δ𝑡∇𝑝𝑛+1. (3)
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Taking the divergence and requiring the incompressibility
condition ∇ ⋅ 𝐮𝑛+1 = 0, we obtain the equation

Δ𝑡∇2𝑝𝑛+1 = ∇ ⋅ 𝐮∗, (4)

which is a Poisson problem for the pressure 𝑝𝑛+1. Finally, the
velocity 𝐮𝑛+1 can be corrected using Eq. (3).

2.1. Spatial discretization
To tackle the space discretization, we utilize the mixed

finite element approach. We will focus on Eq. (2) as it is the
only one requiring to be solved using the SDC methods. The
matrix form of a weak formulation for Eq. (2) can be written
as

[𝙼]𝑑𝐮
𝑑𝑡

= 𝐟 (𝑡,𝐮) = 𝐟𝐼 (𝑡,𝐮) + 𝐟𝐸(𝑡,𝐮), (5)

where [𝙼] is the finite element mass matrix, 𝐟𝐼 (𝑡,𝐮) =
−[𝙺]𝐮+[𝙼]𝐠(𝑡) is the implicit part of 𝐟 with [𝙺] is the stiffness
matrix, and 𝐟𝐸(𝑡,𝐮) = −[𝙲(𝐮)]𝐮 is the non-linear advection
part that should be treated explicitly.

2.2. Parallel-in-time SDC
We write the Picard form of the problem in Eq. (5) as

follows

[𝙼]𝐮(𝑡) = [𝙼]𝐮0 + ∫

𝑡

𝑡𝑛
𝐟 (𝑠,𝐮(𝑠))𝑑𝑠, (6)

𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1,
where 𝐮0 = 𝐮(𝑡𝑛). The integral in Eq. (6) can be approxi-
mated using a spectral quadrature rule. For this reason we
discretize the time interval [𝑡𝑛, 𝑡𝑛+1] using M quadrature
nodes such that 𝑡𝑛 < 𝜏1 < ⋯ < 𝜏𝑀 = 𝑡𝑛+1. Thus the Eq. (6)
can be written as

[𝙼]𝐮𝑚 = [𝙼]𝐮0 + Δ𝑡
𝑀
∑

𝑗=1
𝑞𝑚,𝑗𝐟 (𝜏𝑗 ,𝐮𝑗), (7)

𝑚 = 1,… ,𝑀,
where 𝐮𝑚 ≈ 𝐮(𝜏𝑚) and 𝑞𝑚,𝑗 = ∫ 𝜏𝑚

𝑡0
𝐿𝑗(𝑠)𝑑𝑠, 𝑗 = 1,⋯ ,𝑀

are the set of quadrature weights with 𝐿𝑗 is the Lagrange
polynomial defined on the quadrature node {𝜏𝑗}. Next, we
combine these M equations into one system of linear or non-
linear equations which is called the collocation problem

( − Δ𝑡𝐐𝐅) (𝐮⃗) = 𝐮⃗0, (8)

where  = [𝙼] ⊗ 𝐈𝑀 , 𝐮⃗ = (𝐮1,⋯ ,𝐮𝑀 )𝑇 , 𝐮⃗0 =
(𝐮0,⋯ ,𝐮0)𝑇 , 𝐐 = (𝑞𝑖𝑗)𝑖,𝑗 is the matrix gathering the
quadrature weights and the vector function 𝐅 is given by
𝐅(𝐮⃗) =

(

𝐟 (𝐮1),⋯ , 𝐟 (𝐮𝑀 )
)

. Moreover, if 𝑑 ≥ 2 then 𝐐 and
 must be replaced by 𝐐⊗ 𝐈𝑑 and ⊗ 𝐈𝑑 , respectively. It
should be noted that this system of equation is equivalent
to the fully implicit Runge-Kutta method with 𝐐 being
the Butcher tableau. Generally, this system is dense and
requires an iterative solution. SDC can be presented as

precondtionated Picard iteration for the collocation problem
in Eq. (8) as

(

 − Δ𝑡𝐐Δ𝐅
)

(𝐮⃗𝑘+1) = 𝐮⃗0
+Δ𝑡

(

𝐐 −𝐐Δ
)

𝐅(𝐮⃗𝑘). (9)

The ODE (5) contains both stiff and non-stiff components.
Therefore, semi-implicit SDC (SISDC) is considered for the
solution of Eq. (5). Consequently, the iteration in Eq. (9)
becomes

(

 − Δ𝑡𝐐Δ,𝐼𝐅𝐼 − Δ𝑡𝐐Δ,𝐸𝐅𝐸
)

(𝐮⃗𝑘+1)
= 𝐮⃗0 + Δ𝑡

(

𝐐 −𝐐Δ,𝐼
)

𝐅𝐼 (𝐮⃗𝑘)
+Δ𝑡

(

𝐐 −𝐐Δ,𝐸
)

𝐅𝐸(𝐮⃗𝑘), (10)

where 𝐐Δ,𝐼 and 𝐐Δ,𝐸 are lower and strictly lower triangular
matrices It has been shown in [6] that SDC can be parallelize
over the quadrature nodes using diagonal preconditioners
(i.e., diagonal matrix 𝐐Δ). In this work the following di-
agonal preconditioners are considered: 𝐐Δ,𝐼 = 𝐐𝐼𝐸𝑝𝑎𝑟

Δ ,
𝐐𝑀𝐼𝑁

Δ , 𝐐𝑀𝐼𝑁_𝑆𝑅_𝑆
Δ and 𝐐𝑀𝐼𝑁_𝑆𝑅_𝑁𝑆

Δ , (see [6, 8] for
more details). Given that the matrix 𝐐Δ,𝐸 must be lower
triangular, the null matrix 𝐐Δ,𝐸 = 𝟎 is considered for the
explicit part.

3. Numerical results
In this section, we will consider the benchmark of flow

past a cylinder. The geometry and parameters are taken from
the DFG 2D-3 benchmark in FeatFlow, see Fig. 1. The inflow
velocity profile is

𝐮𝑖𝑛 =
(

4𝑈𝑦(0.41 − 𝑦)
0.412

, 0
)

(11)

𝑈 = 𝑈 (𝑡) = 1.5 sin
(𝜋𝑡
8

)

(12)

and the kinematic viscosity is given by 𝜈 = 0.001.
In Fig. 2 we show the lift coefficients in the unsteady

Navier-Stokes equations subject to the time-dependent in-
flow profile 𝐮𝑖𝑛. These results are computed using 2, 3,
and 5 Gauß–Radau nodes with two different time steps
Δ𝑡 = 1∕1,600 and Δ𝑡 = 1∕1,000. The data provided by
FEATFLOW is also included in the figure as a reference
solution. Based on Fig. 2, it is clear that the different SDC
methods solves accurately the Navier-Stokes equations. It
should be mentioned that there are slight differences between
the results obtained using Δ𝑡 = 1∕1,600 and Δ𝑡 = 1∕1,000
because of the CFL constraint required by the semi-implicit
scheme. Moreover, the average number of iterations for five
different choices of 𝐐Δ,𝐼 after 50 time steps at four different
time points throughout the simulation are displayed in Fig. 3.
These choices are the LU trick (𝐐𝐿𝑈

Δ ) as reference as well
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Figure 1: Computational geometry for the DFG 2D-3 benchmark.

Figure 2: Lift coefficient using different SDC methods and
different time steps.

as the four diagonal matrices listed in the previous section.
From this figure, it can be clearly seen that the standard
option is the best choice for all tests. It can be also seen that
the 𝐐𝐼𝐸𝑝𝑎𝑟

Δ requires at least double the number of iterations
to converge, while the minimization-based preconditioners
𝐐𝑀𝐼𝑁

Δ and 𝐐𝑀𝐼𝑁_𝑆𝑅_𝑁𝑆
Δ seem to be reliable and converge

about as fast as the standard choice 𝐐𝐿𝑈
Δ for the considered

problem. However, the choice 𝐐𝑀𝐼𝑁_𝑆𝑅_𝑆
Δ requires slightly

more iterations to converge.

4. Conclusion
Combining SDC with FEM accurately solves the Navier-

Stokes equations. Diagonal preconditioners enable parallel
SDC, and with minimization-based preconditioners, diago-
nal SDC converges as fast as standard SDC. The future goal
is to use a fully implicit monolithic scheme for the NSE to
avoid the CFL limitations of semi-implicit schemes.
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