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A B S T R A C T

This contribution focuses on a Schwarz-type domain decomposition method for solving an ill-
conditioned dense linear problem overdetermined with complex coefficients arising from the inverse
problem of determining, by the method of equivalent sources, the aeroacoustic noise generated by a
fluid on the surface of a body.

1. Introduction
The Equivalent Source Method (ESM) aiming at the

simulation of realistic Frequency Response Functions (FRF)
substitutes the acoustic behavior of a radiating object by
a set of 𝑁𝑠 acoustic monopoles 𝑞 calibrated with respect
to the boundary condition 𝑣 on its skin. The method is a
meshless approach so that it is easy and simple to implement,
and it does not have a numerical singularity problem that
occurs in the boundary element method [1]. Such a method
allows to perform 3D Conventional Beamforming (CBF)
with FRF considering the acoustic environment and the
influence structure [2, 3].

The set 𝜔 of 𝑁 boundary points at position (𝑟𝑗)𝑗≤𝑁 on
the object skin and the set Ω of 𝑁𝑠 equivalent sources at
the position (𝑟𝑙)𝑙≤𝑁𝑠

, allow to build the matrix coefficients
of the transfer function for the wave number 𝑘 between the
equivalent sources and the normal velocity, with 𝜃𝑗𝑙 the
angle of 𝑟𝑗 − 𝑟𝑙 and the normal to the object skin at 𝑟𝑗 , as

𝐴𝑗𝑙 = 𝑒𝑖𝑘||𝑟𝑗−𝑟𝑙||2

4𝜋||𝑟𝑗 − 𝑟𝑙||22
(1 − 𝑖𝑘||𝑟𝑗 − 𝑟𝑙||2) cos(𝜃𝑗𝑙).

This contribution presents a Schwarz-type domain decom-
position method for solving this overdetermined, dense and
ill-conditioned linear system 𝐴𝑞 = 𝑣, 𝐴 ∈ ℂ𝑁×𝑁𝑠 . The
ESM suffers from the numerical instability that is associated
with the ill-conditioned matrix 𝐴 due to the random distri-
bution of equivalent sources [1, 4].
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2. Schwarz-type domain decomposition
The Restricted Additive Schwarz domain decomposition

method (DDM), see, e.g., [5] and references therein, with a
well-posed linear system has convergence/divergence prop-
erties allowing its acceleration of the convergence to the
correct solution. Here, difficulties arise because the matrix
𝐴 is a complex non-square matrix, and it is also a dense
matrix, where each source contributes to each control point.
Consequently, there is no natural interface to control the
splitting of the domain(s).

2.1. Schwarz DDM based on the geometrical
splitting

To define the DDM partitioning in m pairs {(𝜔𝑙,Ω𝑙), 𝑙 =
1,… , 𝑚} of subdomains overlapping or not, 𝜔 and Ω are
split as follows: from a mesh of the surface (where the
vertices are the control points), and the equivalent sources
within the object, we divide the surface in m partitions using
the METIS graph partitioning library, based on the vertices
adjacency. Then, we assign to each equivalent source the
rank of the nearest control point using a K-D tree.

With the given partitioning, we iteratively solve Eq. (1),
where 𝐴𝑖𝑗 represents the block of the original matrix with
respect to the partition renumbering and 𝐴+

𝑖𝑖 is the pseudo
inverse of the block 𝐴𝑖𝑖, in order to update the iterated
solution 𝑥(𝑘+1)𝑖 with respect to the iterated solution 𝑥(𝑘), i.e.,

𝑥(𝑘+1)𝑖 = 𝐴+
𝑖𝑖

(

𝑏𝑖 −
𝑚
∑

1=𝑗≠𝑖
𝐴𝑖𝑗𝑥

(𝑘)
𝑗

)

. (1)

Nevertheless, the resulting method is a divergent method
(even with the addition of a relaxation parameter where
it converges before diverging). The pure linear conver-
gence/divergence is lost due to ill-conditioning and solving
of Eq. (1) in the least squares sense. Moreover, the singular
value decomposition (SVD) of the 𝐴𝑖𝑗 blocks shows that
some of them contribute strongly to the 𝑏𝑖 RHS, see Fig. 2a.
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Figure 1: From the left to the right: surface 𝜔 of control points, non-overlapping partition of 𝜔, volume Ω of randomly distributed
equivalent sources, partitioning of the volume with respect to the 𝜔 partitioning, example of two resulting subdomain pairs
(𝜔𝑙,Ω𝑙).

(a) (b) (c) (d)

25, 28, 27, 1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω1

, 17, 18, 13, 2
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω2

, 31, 29, 26, 4
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω3

, 7, 3, 32, 24
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Ω4

, 30, 23, 19, 8
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω5

, 20, 5, 11, 22
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω6

, 16, 15, 14, 9
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω7

, 6, 21, 10, 12
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Ω8

Figure 2: Numerical criterion splitting process starting from a geometrical partitioning of 32 partitions to obtain a partitioning
with 8 partitions.

2.2. Numerical criterion splitting
Figure 2 shows the partitioning based on a numerical

criterion. The idea is to take into account the factor 1∕𝑟2
in the matrix coefficients. Starting from the geometrical
partitioning with a greater number of partitions than the
expected final number, we compute the SVD of each block,
see Fig. 2a, and define the threshold criterion 𝜏 as % of
the number of singular values greater than a given 𝜖 (here
𝜖 = 10−12). It produces an adjacency matrix (b) of blocks
satisfying this criterion, see Fig. 2b. We reduce the profile
of this adjacency matrix with the reverse Cuthill MacKnee’s
algorithm, see Fig. 2c. We then gather the adjacent blocks to
define the new partitioning, see Fig. 2d.

2.3. Projected Schwarz algorithm to handle
over-determined systems

We use the SVD 𝑈𝑗𝑖𝑆𝑗𝑖𝑉 ∗
𝑗𝑖 = 𝐴𝑗𝑖 of each block 𝐴𝑗𝑖 of

the new partitioning to define a projected Schwarz algorithm
where the right hand side of the local problem is projected
on the left singular vectors associated with singular values
greater than 𝜖 of each block acting on the components of
𝑥(𝑘+1)𝑖 . This leads to solving a compressed system with a 𝜉

percentage of the 𝑁 rows of the original one. The solution
of the 𝑖𝑡ℎ partition reads

𝐴̄𝑖𝑥
(𝑘+1)
𝑖 = 𝕌∗

𝑖
(

𝑏 − 𝐴̃
)

, (2)

with

𝐴̄𝑖 =
⎛

⎜

⎜

⎝

𝑆1𝑖𝑉 ∗
1𝑖

⋮
𝑆𝑚𝑖𝑉 ∗

𝑚𝑖

⎞

⎟

⎟

⎠

, 𝕌∗
𝑖 =

⎛

⎜

⎜

⎝

𝑈∗
1𝑖

⋱
𝑈∗
𝑚𝑖

⎞

⎟

⎟

⎠

, 𝑏 =
⎛

⎜

⎜

⎝

𝑏1
⋮
𝑏𝑚

⎞

⎟

⎟

⎠

and

𝐴̃ = 𝐴
(

𝑥(𝑘)1 ,… , 𝑥(𝑘)𝑖−1, 0𝑖, 𝑥
(𝑘)
𝑖+1,… , 𝑥(𝑘)𝑚

)𝑡

=
⎛

⎜

⎜

⎝

𝐴11⋯𝐴1𝑖−1 𝐴1𝑖+1⋯𝐴1𝑚
⋮ ⋮

𝐴𝑚1⋯𝐴𝑚𝑖−1 𝐴𝑚𝑖+1⋯𝐴𝑚𝑚

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑥(𝑘)1
⋮

𝑥(𝑘)𝑖−1
𝑥(𝑘)𝑖+1
⋮
𝑥(𝑘)𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

This compressed local system Eq. (2) is solved by SVD with a
better conditioning than the full system with about 10 orders
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𝑁𝑠 = 3,200 1 2 3 4 5 6 7 8
1 390 352 313 360 252 166 151 159
2 369 409 365 364 319 257 264 224
3 323 325 408 316 302 211 327 249
4 347 373 321 394 393 290 223 275
5 258 335 314 393 401 402 254 344
6 171 254 212 276 381 404 273 398
7 151 244 285 206 243 259 395 351
8 166 224 240 284 360 400 340 399

𝑁 = 6,400 2,175 2,516 2,458 2,593 2,651 2,389 2,227 2,399
𝜉 = 100% 34% 39% 38% 41% 41% 37% 35% 37%

Table 1
Size of system 𝐴̄𝑖 for the sphere problem, 𝑁𝑠 = 3,200, 𝑁 = 6,400, 𝑘 = 400Hz, 𝜖 = 10−12, 𝜏 = 0.8.

𝑙𝑜𝑔10(𝑐𝑜𝑛𝑑(𝐴)) 𝑙𝑜𝑔10(𝑐𝑜𝑛𝑑(𝐴̄𝑖))
1 2 3 4 5 6 7 8

18.87 9.37 7.98 9.12 7.65 7.86 8.71 9.02 7.88

Table 2
The quantity 𝑙𝑜𝑔10(𝑐𝑜𝑛𝑑(𝐴̄𝑖)) for the sphere problem, 𝑁𝑠 = 3,200, 𝑁 = 6,400, 𝑘 = 400Hz, 𝜖 = 10−12, 𝜏 = 0.8.

of magnitude, see Tab. 2. Recalling the SVD complexity of
𝑂(𝑁 𝑁𝑠 min(𝑁,𝑁𝑠)) for 𝐴 ∈ ℂ𝑁×𝑁𝑠 , we have for the SVD
computing of 𝐴̄𝑖 a theoretical numerical speed-up of 𝑚∕𝜉
and 𝑚2∕𝜉 if it is done in parallel over 𝑚 processes.

3. First results and conclusion
We consider a monopole scattered by a rigid sphere

problem as described in [2].

Table 1 gives the size of the 𝐴̄𝑖 system after compression,
for the sphere problem with: 𝑁𝑠 = 3,200, 𝑁 = 6,400, 𝑘 =
400Hz, 𝜖 = 10−12, 𝜏 = 0.8 and the last row represents the 𝜉
percentage of compression of 𝐴̄𝑖 with respect to the original
size of 𝑁 = 6,400. The value of 𝜉 is between 34% and
41%. Table 1 also gives details of the size of the compressed
system resulting from the 𝐴𝑗𝑖 block. For example, 𝐴81 has
399 rows and the compressed block 𝑆81𝑉 ∗

81 has 166 rows.

(a) 𝑥(0) = 0. (b) SVD solution of 𝐴𝑥(0) = 𝑏.

Figure 3: Convergence of the Schwarz DDM on 8 partitions with respect to the iterations for two initial guesses for the monopole
scattered by a rigid sphere with 𝑁𝑠 = 3,200, 𝑁 = 6,400, 𝑘 = 400Hz, 𝜖 = 10−12, 𝜏 = 0.8.
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Table 2 exhibits the conditioning number for 𝐴̄𝑖 for the
sphere problem. They are up to ten orders lower than for the
original full system.

Figure 3 shows the convergence behavior of the pro-
jected Schwarz algorithm with respect to the iterations. It
exhibits a fast convergence starting from the arbitrary initial
guess 𝑥(0) = 0 followed by a slow convergence, see Fig. 3a,
and an improvement on the solution starting from the initial
guess solution of 𝐴𝑥(0) = 𝑏 computed by SVD , see Fig. 3b.
Let us notice that the algorithm is still stable after the
convergence.

The talk will also focus on the numerical and parallel
performances of the proposed projected Schwarz algorithm
on larger size problems using the PETSc and SLEPc libraries
for the implementation.
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