001     1042312
005     20250804115244.0
024 7 _ |a 10.1021/jacs.5c04159
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02519
|2 datacite_doi
024 7 _ |a 40285725
|2 pmid
024 7 _ |a WOS:001477553300001
|2 WOS
037 _ _ |a FZJ-2025-02519
082 _ _ |a 540
100 1 _ |a Levorin, Leonardo
|0 P:(DE-Juel1)198708
|b 0
245 _ _ |a Isoleucine Side Chains as Reporters of Conformational Freedom in Protein Folding Studied by DNP-Enhanced NMR
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750917357_29661
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Conformations of protein side chains are closely linked to protein function. DNP-enhanced solid-state NMR (ssNMR), which operates at cryogenic temperatures (<110 K), can be used to freeze-trap protein conformations, including the side chains. In the present study, we employed two-dimensional DNP-enhanced ssNMR to get detailed insights into backbone and side chain conformations of isoleucine. We used different amino acid selectively labeled model proteins for intrinsically disordered proteins (IDPs), denatured and well-folded proteins, and amyloid fibrils. 13C chemical shifts are closely correlated with secondary structure elements and χ1 and χ2 angles in isoleucine side chains. Thus, line shape analysis by integration of representative peak areas in 2D spectra provides an accurate overview of the distribution of backbone and side chain conformations. For the well-folded proteins GABARAP and bovine PI3-kinase (PI3K) SH3 domain, most Ile chemical shifts in frozen solution are well resolved and similar to those observed in solution. However, line widths of individual Ile residues are directly linked to residual mobility, and line broadening or even signal splitting appears for those Ile residues, which are not part of well-defined secondary structure elements. For unfolded PI3K SH3 and the IDP α-synuclein (α-syn), all Ile side chains have full conformational freedom, and as a consequence, inhomogeneous line broadening dominates the cryogenic spectra. Moreover, we demonstrate that conformational ensembles of proteins strongly depend on solvent and buffer conditions. This allowed different unfolded structures for chemical and acidic pH denaturation of the PI3K SH3 domain to be distinguished. In amyloid fibrils of α-syn and PI3K SH3, chemical shifts typical for β-strand like secondary structure dominate the spectra, whereas Ile residues belonging to the fuzzy coat still add the IDP-type line shapes. Hence, DNP-enhanced ssNMR is a useful tool for investigating side chain facilitated protein functions and interactions.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Becker, Nina
|0 P:(DE-Juel1)178027
|b 1
700 1 _ |a Uluca-Yazgi, Boran
|0 P:(DE-Juel1)208937
|b 2
|u fzj
700 1 _ |a Gardon, Luis
|0 P:(DE-Juel1)185029
|b 3
700 1 _ |a Kraus, Mirko
|0 P:(DE-Juel1)190543
|b 4
700 1 _ |a Sevenich, Marc
|0 P:(DE-Juel1)165152
|b 5
700 1 _ |a Apostolidis, Athina
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schmitz, Kai
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rüter, Neomi
|0 P:(DE-Juel1)201187
|b 8
700 1 _ |a Apanasenko, Irina
|0 P:(DE-Juel1)172053
|b 9
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 10
700 1 _ |a Hoyer, Wolfgang
|0 P:(DE-Juel1)201143
|b 11
|u fzj
700 1 _ |a Neudecker, Philipp
|0 P:(DE-Juel1)144510
|b 12
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 13
700 1 _ |a Heise, Henrike
|0 P:(DE-Juel1)132002
|b 14
|e Corresponding author
773 _ _ |a 10.1021/jacs.5c04159
|g Vol. 147, no. 18, p. 15867 - 15879
|0 PERI:(DE-600)1472210-0
|n 18
|p 15867 - 15879
|t Journal of the American Chemical Society
|v 147
|y 2025
|x 0002-7863
856 4 _ |u https://juser.fz-juelich.de/record/1042312/files/levorin-et-al-2025-isoleucine-side-chains-as-reporters-of-conformational-freedom-in-protein-folding-studied-by-dnp.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042312
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)198708
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)208937
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185029
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)190543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172053
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)201143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)144510
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)132002
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21