Home > Publications database > Memory Prefetching Evaluation of Scientific Applications on A Modern HPC Arm-based Processor > print |
001 | 1042334 | ||
005 | 20250804115218.0 | ||
024 | 7 | _ | |a 10.1109/ACCESS.2025.3569533 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-02537 |2 datacite_doi |
024 | 7 | _ | |a WOS:001492121500023 |2 WOS |
037 | _ | _ | |a FZJ-2025-02537 |
082 | _ | _ | |a 621.3 |
100 | 1 | _ | |a Ho, Nam |0 P:(DE-Juel1)176469 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Memory Prefetching Evaluation of Scientific Applications on A Modern HPC Arm-based Processor |
260 | _ | _ | |a New York, NY |c 2025 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1753033141_20204 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Memory prefetching is a well-known technique for mitigating the negative impact of memory access latencies on memory bandwidth. This problem has become more pressing as improvements in memory bandwidth have not kept pace with increases in computational power. While much existing work has been devoted to finding appropriate prefetching techniques for specific workloads, few provide insight into the behavior of scientific applications to better understand the impact of prefetchers. This paper investigates the impact of hardware prefetchers on the latest Arm-based high-end processor architectures. In this work, we investigate memory access patterns by analyzing locality properties and visualizing delta and repetitive address patterns. A deeper understanding of memory access patterns allows the use of the appropriate prefetcher and reaching a better correlation between access pattern properties and prefetcher performance. This can guide future co-design efforts. We evaluated traditional and innovative prefetchers using a gem5-based model of Arm Neoverse V1 cores. The model features a 16-core architecture, using Amazon’s Graviton 3 processor as a hardware reference, but substituting DDR5 by high bandwidth memory (HBM2). We performed a detailed prefetching evaluation focusing on stencil, sparse matrix-vector multiplication, and Breadth-First Search kernels. These kernels represent a broad range of the applications running on today’s High-Performance Computing (HPC) systems, which are sensitive to memory performance. |
536 | _ | _ | |a 5122 - Future Computing & Big Data Systems (POF4-512) |0 G:(DE-HGF)POF4-5122 |c POF4-512 |f POF IV |x 0 |
536 | _ | _ | |a EPI SGA2 (16ME0507K) |0 G:(BMBF)16ME0507K |c 16ME0507K |x 1 |
536 | _ | _ | |a EPI SGA1 - SGA1 (Specific Grant Agreement 1) OF THE EUROPEAN PROCESSOR INITIATIVE (EPI) (826647) |0 G:(EU-Grant)826647 |c 826647 |f H2020-SGA-LPMT-2018 |x 2 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a FALQUEZ, CARLOS |0 P:(DE-Juel1)179531 |b 1 |u fzj |
700 | 1 | _ | |a PORTERO, ANTONI |0 P:(DE-Juel1)177768 |b 2 |
700 | 1 | _ | |a SUAREZ, ESTELA |0 P:(DE-Juel1)142361 |b 3 |u fzj |
700 | 1 | _ | |a PLEITER, DIRK |0 P:(DE-Juel1)144441 |b 4 |
773 | _ | _ | |a 10.1109/ACCESS.2025.3569533 |0 PERI:(DE-600)2687964-5 |p 85898 - 85926 |t IEEE access |v 13 |y 2025 |x 2169-3536 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1042334/files/APC600663786.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1042334/files/Memory_Prefetching_Evaluation_of_Scientific_Applications_on_a_Modern_HPC_Arm-Based_Processor.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1042334 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176469 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)179531 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)142361 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-512 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Supercomputing & Big Data Infrastructures |9 G:(DE-HGF)POF4-5122 |x 0 |
914 | 1 | _ | |y 2025 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2025-01-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE ACCESS : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:39:05Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:39:05Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:39:05Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|