001042350 001__ 1042350
001042350 005__ 20250721202235.0
001042350 0247_ $$2doi$$a10.1088/1751-8121/adcd16
001042350 0247_ $$2ISSN$$a1751-8113
001042350 0247_ $$2ISSN$$a0301-0015
001042350 0247_ $$2ISSN$$a1751-8121
001042350 0247_ $$2ISSN$$a2051-2163
001042350 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02544
001042350 0247_ $$2WOS$$aWOS:001478116000001
001042350 037__ $$aFZJ-2025-02544
001042350 041__ $$aEnglish
001042350 082__ $$a530
001042350 1001_ $$0P:(DE-Juel1)200494$$aHeib, Tim$$b0$$eCorresponding author$$ufzj
001042350 245__ $$aBounding the rotating wave approximation for coupled harmonic oscillators
001042350 260__ $$aBristol$$bIOP Publishing$$c2025
001042350 3367_ $$2DRIVER$$aarticle
001042350 3367_ $$2DataCite$$aOutput Types/Journal article
001042350 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747143004_10979
001042350 3367_ $$2BibTeX$$aARTICLE
001042350 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042350 3367_ $$00$$2EndNote$$aJournal Article
001042350 520__ $$aIn this work we study the validity of the rotating wave approximation of an ideal system composed of two harmonic oscillators evolving with a quadratic Hamiltonian and arbitrarily strong interaction. We prove its validity for arbitrary states by bounding the error introduced. We then restrict ourselves to the dynamics of Gaussian states and are able to fully quantify the deviation of arbitrary pure Gaussian states that evolve through different dynamics from a common quantum state. We show that this distance is fully determined by the first and second moments of the statistical distribution of the number of excitations created from the vacuum during an appropriate effective time-evolution. We use these results to completely control the dynamics for this class of states, therefore providing a toolbox to be used in quantum optics and quantum information. Applications and potential physical implementations are also discussed.
001042350 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001042350 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x1
001042350 536__ $$0G:(DE-Juel1)BMBF-13N16210$$aBMBF 13N16210 - SPINNING – Spin-Photon-basierter Quantencomputer auf Diamantbasis (BMBF-13N16210)$$cBMBF-13N16210$$x2
001042350 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042350 7001_ $$0P:(DE-Juel1)184386$$aLageyre, Paul$$b1$$ufzj
001042350 7001_ $$0P:(DE-Juel1)188528$$aFerreri, Alessandro$$b2
001042350 7001_ $$0P:(DE-Juel1)184630$$aWilhelm, Frank K$$b3
001042350 7001_ $$0P:(DE-HGF)0$$aParaoanu, G. S.$$b4
001042350 7001_ $$0P:(DE-HGF)0$$aBurgarth, Daniel$$b5
001042350 7001_ $$0P:(DE-HGF)0$$aSchell, Andreas W$$b6
001042350 7001_ $$0P:(DE-Juel1)185963$$aEdward Bruschi, David$$b7
001042350 773__ $$0PERI:(DE-600)3115680-0$$a10.1088/1751-8121/adcd16$$gVol. 58, no. 17, p. 175304 -$$n17$$p175304 -$$tJournal of physics / A$$v58$$x1751-8113$$y2025
001042350 8564_ $$uhttps://juser.fz-juelich.de/record/1042350/files/Heib_2025_J._Phys._A__Math._Theor._58_175304.pdf$$yOpenAccess
001042350 8767_ $$d2025-07-21$$eHybrid-OA$$jPublish and Read$$zQ2 2025
001042350 909CO $$ooai:juser.fz-juelich.de:1042350$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery
001042350 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200494$$aForschungszentrum Jülich$$b0$$kFZJ
001042350 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184386$$aForschungszentrum Jülich$$b1$$kFZJ
001042350 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188528$$aForschungszentrum Jülich$$b2$$kFZJ
001042350 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b3$$kFZJ
001042350 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185963$$aForschungszentrum Jülich$$b7$$kFZJ
001042350 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001042350 9141_ $$y2025
001042350 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001042350 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042350 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS A-MATH THEOR : 2022$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042350 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-11$$wger
001042350 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001042350 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001042350 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001042350 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001042350 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001042350 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001042350 920__ $$lyes
001042350 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001042350 9801_ $$aFullTexts
001042350 980__ $$ajournal
001042350 980__ $$aVDB
001042350 980__ $$aUNRESTRICTED
001042350 980__ $$aI:(DE-Juel1)PGI-12-20200716
001042350 980__ $$aAPC