001     1042350
005     20250721202235.0
024 7 _ |a 10.1088/1751-8121/adcd16
|2 doi
024 7 _ |a 1751-8113
|2 ISSN
024 7 _ |a 0301-0015
|2 ISSN
024 7 _ |a 1751-8121
|2 ISSN
024 7 _ |a 2051-2163
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02544
|2 datacite_doi
024 7 _ |a WOS:001478116000001
|2 WOS
037 _ _ |a FZJ-2025-02544
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Heib, Tim
|0 P:(DE-Juel1)200494
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Bounding the rotating wave approximation for coupled harmonic oscillators
260 _ _ |a Bristol
|c 2025
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747143004_10979
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work we study the validity of the rotating wave approximation of an ideal system composed of two harmonic oscillators evolving with a quadratic Hamiltonian and arbitrarily strong interaction. We prove its validity for arbitrary states by bounding the error introduced. We then restrict ourselves to the dynamics of Gaussian states and are able to fully quantify the deviation of arbitrary pure Gaussian states that evolve through different dynamics from a common quantum state. We show that this distance is fully determined by the first and second moments of the statistical distribution of the number of excitations created from the vacuum during an appropriate effective time-evolution. We use these results to completely control the dynamics for this class of states, therefore providing a toolbox to be used in quantum optics and quantum information. Applications and potential physical implementations are also discussed.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)
|0 G:(BMBF)13N15685
|c 13N15685
|x 1
536 _ _ |a BMBF 13N16210 - SPINNING – Spin-Photon-basierter Quantencomputer auf Diamantbasis (BMBF-13N16210)
|0 G:(DE-Juel1)BMBF-13N16210
|c BMBF-13N16210
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lageyre, Paul
|0 P:(DE-Juel1)184386
|b 1
|u fzj
700 1 _ |a Ferreri, Alessandro
|0 P:(DE-Juel1)188528
|b 2
700 1 _ |a Wilhelm, Frank K
|0 P:(DE-Juel1)184630
|b 3
700 1 _ |a Paraoanu, G. S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Burgarth, Daniel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schell, Andreas W
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Edward Bruschi, David
|0 P:(DE-Juel1)185963
|b 7
773 _ _ |a 10.1088/1751-8121/adcd16
|g Vol. 58, no. 17, p. 175304 -
|0 PERI:(DE-600)3115680-0
|n 17
|p 175304 -
|t Journal of physics / A
|v 58
|y 2025
|x 1751-8113
856 4 _ |u https://juser.fz-juelich.de/record/1042350/files/Heib_2025_J._Phys._A__Math._Theor._58_175304.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042350
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200494
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184386
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)184630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)185963
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS A-MATH THEOR : 2022
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: IOP Publishing 2022
|2 APC
|0 PC:(DE-HGF)0107
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21