001042351 001__ 1042351
001042351 005__ 20250610131452.0
001042351 0247_ $$2doi$$a10.1103/PhysRevA.111.032411
001042351 0247_ $$2ISSN$$a2469-9926
001042351 0247_ $$2ISSN$$a2469-9942
001042351 0247_ $$2ISSN$$a2469-9934
001042351 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02545
001042351 0247_ $$2WOS$$aWOS:001451675900006
001042351 037__ $$aFZJ-2025-02545
001042351 041__ $$aEnglish
001042351 082__ $$a530
001042351 1001_ $$0P:(DE-Juel1)195623$$aBode, Tim$$b0$$eCorresponding author
001042351 245__ $$aQuantum combinatorial optimization beyond the variational paradigm: Simple schedules for hard problems
001042351 260__ $$aWoodbury, NY$$bInst.$$c2025
001042351 3367_ $$2DRIVER$$aarticle
001042351 3367_ $$2DataCite$$aOutput Types/Journal article
001042351 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747145242_4520
001042351 3367_ $$2BibTeX$$aARTICLE
001042351 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042351 3367_ $$00$$2EndNote$$aJournal Article
001042351 520__ $$aAdvances in quantum algorithms suggest a tentative scaling advantage on certain combinatorial optimization problems. Recent work, however, has also reinforced the idea that barren plateaus render variational algorithms ineffective on large Hilbert spaces. Hence, finding annealing protocols by variation ultimately appears to be difficult. Similarly, the adiabatic theorem fails on hard problem instances with first-order quantum phase transitions. Here we show how to use the spin coherent-state path integral to shape the geometry of quantum adiabatic evolution, leading to annealing protocols at polynomial overhead that provide orders-of-magnitude improvements in the probability to measure optimal solutions, relative to linear protocols. These improvements are not obtained on a controllable toy problem but on randomly generated hard instances (Sherrington-Kirkpatrick and maximum 2-satisfiability), making them generic and robust. Our method works for large systems and may thus be used to improve the performance of state-of-the-art quantum devices.
001042351 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001042351 536__ $$0G:(BMBF)13N15688$$aVerbundprojekt: Digital-Analoge Quantencomputer (DAQC) - Teilvorhaben: DAQC Kontrolle, Kalibrierung und Charakterisierung (13N15688)$$c13N15688$$x1
001042351 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042351 7001_ $$0P:(DE-Juel1)175497$$aRamesh, Krish$$b1
001042351 7001_ $$0P:(DE-Juel1)194697$$aStollenwerk, Tobias$$b2
001042351 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.111.032411$$gVol. 111, no. 3, p. 032411$$n3$$p032411$$tPhysical review / A$$v111$$x2469-9926$$y2025
001042351 8564_ $$uhttps://juser.fz-juelich.de/record/1042351/files/PhysRevA.111.032411.pdf$$yOpenAccess
001042351 909CO $$ooai:juser.fz-juelich.de:1042351$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001042351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195623$$aForschungszentrum Jülich$$b0$$kFZJ
001042351 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194697$$aForschungszentrum Jülich$$b2$$kFZJ
001042351 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001042351 9141_ $$y2025
001042351 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001042351 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001042351 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2025-01-02
001042351 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042351 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001042351 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001042351 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001042351 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042351 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001042351 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001042351 920__ $$lyes
001042351 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001042351 980__ $$ajournal
001042351 980__ $$aVDB
001042351 980__ $$aUNRESTRICTED
001042351 980__ $$aI:(DE-Juel1)PGI-12-20200716
001042351 9801_ $$aFullTexts