Home > Publications database > Quantum combinatorial optimization beyond the variational paradigm: Simple schedules for hard problems > print |
001 | 1042351 | ||
005 | 20250610131452.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevA.111.032411 |2 doi |
024 | 7 | _ | |a 2469-9926 |2 ISSN |
024 | 7 | _ | |a 2469-9942 |2 ISSN |
024 | 7 | _ | |a 2469-9934 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-02545 |2 datacite_doi |
024 | 7 | _ | |a WOS:001451675900006 |2 WOS |
037 | _ | _ | |a FZJ-2025-02545 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Bode, Tim |0 P:(DE-Juel1)195623 |b 0 |e Corresponding author |
245 | _ | _ | |a Quantum combinatorial optimization beyond the variational paradigm: Simple schedules for hard problems |
260 | _ | _ | |a Woodbury, NY |c 2025 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1747145242_4520 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Advances in quantum algorithms suggest a tentative scaling advantage on certain combinatorial optimization problems. Recent work, however, has also reinforced the idea that barren plateaus render variational algorithms ineffective on large Hilbert spaces. Hence, finding annealing protocols by variation ultimately appears to be difficult. Similarly, the adiabatic theorem fails on hard problem instances with first-order quantum phase transitions. Here we show how to use the spin coherent-state path integral to shape the geometry of quantum adiabatic evolution, leading to annealing protocols at polynomial overhead that provide orders-of-magnitude improvements in the probability to measure optimal solutions, relative to linear protocols. These improvements are not obtained on a controllable toy problem but on randomly generated hard instances (Sherrington-Kirkpatrick and maximum 2-satisfiability), making them generic and robust. Our method works for large systems and may thus be used to improve the performance of state-of-the-art quantum devices. |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
536 | _ | _ | |a Verbundprojekt: Digital-Analoge Quantencomputer (DAQC) - Teilvorhaben: DAQC Kontrolle, Kalibrierung und Charakterisierung (13N15688) |0 G:(BMBF)13N15688 |c 13N15688 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ramesh, Krish |0 P:(DE-Juel1)175497 |b 1 |
700 | 1 | _ | |a Stollenwerk, Tobias |0 P:(DE-Juel1)194697 |b 2 |
773 | _ | _ | |a 10.1103/PhysRevA.111.032411 |g Vol. 111, no. 3, p. 032411 |0 PERI:(DE-600)2844156-4 |n 3 |p 032411 |t Physical review / A |v 111 |y 2025 |x 2469-9926 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1042351/files/PhysRevA.111.032411.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1042351 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)195623 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)194697 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2025-01-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-12-20200716 |k PGI-12 |l Quantum Computing Analytics |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-12-20200716 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|