001042365 001__ 1042365
001042365 005__ 20250610131453.0
001042365 0247_ $$2doi$$a10.1371/journal.pone.0322983
001042365 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02547
001042365 0247_ $$2pmid$$a40354445
001042365 0247_ $$2WOS$$aWOS:001488716700004
001042365 037__ $$aFZJ-2025-02547
001042365 082__ $$a610
001042365 1001_ $$0P:(DE-Juel1)178756$$aWischnewski, Kevin J.$$b0
001042365 245__ $$aExploring dynamical whole-brain models in high-dimensional parameter spaces
001042365 260__ $$aSan Francisco, California, US$$bPLOS$$c2025
001042365 3367_ $$2DRIVER$$aarticle
001042365 3367_ $$2DataCite$$aOutput Types/Journal article
001042365 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747402355_20756
001042365 3367_ $$2BibTeX$$aARTICLE
001042365 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042365 3367_ $$00$$2EndNote$$aJournal Article
001042365 520__ $$aPersonalized modeling of the resting-state brain activity implies the usage of dynamical whole-brain models with high-dimensional model parameter spaces. However, the practical benefits and mathematical challenges originating from such approaches have not been thoroughly documented, leaving the question of the value and utility of high-dimensional approaches unanswered. Studying a whole-brain model of coupled phase oscillators, we proceeded from low-dimensional scenarios featuring 2–3 global model parameters only to high-dimensional cases, where we additionally equipped every brain region with a specific local model parameter. To enable the parameter optimizations for the high-dimensional model fitting to empirical data, we applied two dedicated mathematical optimization algorithms (Bayesian Optimization, Covariance Matrix Adaptation Evolution Strategy). We thereby optimized up to 103 parameters simultaneously with the aim to maximize the correlation between simulated and empirical functional connectivity separately for 272 subjects. The obtained model parameters demonstrated increased variability within subjects and reduced reliability across repeated optimization runs in high-dimensional spaces. Nevertheless, the quality of the model validation (goodness-of-fit, GoF) improved considerably and remained very stable and reliable together with the simulated functional connectivity. Applying the modeling results to phenotypical data, we found significantly higher prediction accuracies for sex classification when the GoF or coupling parameter values optimized in the high-dimensional spaces were considered as features. Our results elucidate the model fitting in high-dimensional parameter spaces and can contribute to an improved dynamical brain modeling as well as its application to the frameworks of inter-individual variability and brain-behavior relationships.
001042365 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001042365 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042365 7001_ $$0P:(DE-HGF)0$$aJarre, Florian$$b1
001042365 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b2
001042365 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b3$$eCorresponding author
001042365 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0322983$$gVol. 20, no. 5, p. e0322983 -$$n5$$pe0322983 -$$tPLOS ONE$$v20$$x1932-6203$$y2025
001042365 8564_ $$uhttps://juser.fz-juelich.de/record/1042365/files/journal.pone.0322983.pdf$$yOpenAccess
001042365 8767_ $$d2025-05-14$$eAPC$$jZahlung erfolgt$$zPlos Report
001042365 909CO $$ooai:juser.fz-juelich.de:1042365$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001042365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178756$$aForschungszentrum Jülich$$b0$$kFZJ
001042365 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)178756$$a HHU Düsseldorf$$b0
001042365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b2$$kFZJ
001042365 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b2
001042365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b3$$kFZJ
001042365 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001042365 9141_ $$y2025
001042365 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001042365 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001042365 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2022$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-02-08T09:37:46Z
001042365 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-02-08T09:37:46Z
001042365 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042365 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-16
001042365 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001042365 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042365 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001042365 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001042365 980__ $$ajournal
001042365 980__ $$aVDB
001042365 980__ $$aUNRESTRICTED
001042365 980__ $$aI:(DE-Juel1)INM-7-20090406
001042365 980__ $$aAPC
001042365 9801_ $$aAPC
001042365 9801_ $$aFullTexts