001     1042365
005     20250610131453.0
024 7 _ |a 10.1371/journal.pone.0322983
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02547
|2 datacite_doi
024 7 _ |a 40354445
|2 pmid
024 7 _ |a WOS:001488716700004
|2 WOS
037 _ _ |a FZJ-2025-02547
082 _ _ |a 610
100 1 _ |a Wischnewski, Kevin J.
|0 P:(DE-Juel1)178756
|b 0
245 _ _ |a Exploring dynamical whole-brain models in high-dimensional parameter spaces
260 _ _ |a San Francisco, California, US
|c 2025
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747402355_20756
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Personalized modeling of the resting-state brain activity implies the usage of dynamical whole-brain models with high-dimensional model parameter spaces. However, the practical benefits and mathematical challenges originating from such approaches have not been thoroughly documented, leaving the question of the value and utility of high-dimensional approaches unanswered. Studying a whole-brain model of coupled phase oscillators, we proceeded from low-dimensional scenarios featuring 2–3 global model parameters only to high-dimensional cases, where we additionally equipped every brain region with a specific local model parameter. To enable the parameter optimizations for the high-dimensional model fitting to empirical data, we applied two dedicated mathematical optimization algorithms (Bayesian Optimization, Covariance Matrix Adaptation Evolution Strategy). We thereby optimized up to 103 parameters simultaneously with the aim to maximize the correlation between simulated and empirical functional connectivity separately for 272 subjects. The obtained model parameters demonstrated increased variability within subjects and reduced reliability across repeated optimization runs in high-dimensional spaces. Nevertheless, the quality of the model validation (goodness-of-fit, GoF) improved considerably and remained very stable and reliable together with the simulated functional connectivity. Applying the modeling results to phenotypical data, we found significantly higher prediction accuracies for sex classification when the GoF or coupling parameter values optimized in the high-dimensional spaces were considered as features. Our results elucidate the model fitting in high-dimensional parameter spaces and can contribute to an improved dynamical brain modeling as well as its application to the frameworks of inter-individual variability and brain-behavior relationships.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jarre, Florian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 2
700 1 _ |a Popovych, Oleksandr V.
|0 P:(DE-Juel1)131880
|b 3
|e Corresponding author
773 _ _ |a 10.1371/journal.pone.0322983
|g Vol. 20, no. 5, p. e0322983 -
|0 PERI:(DE-600)2267670-3
|n 5
|p e0322983 -
|t PLOS ONE
|v 20
|y 2025
|x 1932-6203
856 4 _ |u https://juser.fz-juelich.de/record/1042365/files/journal.pone.0322983.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042365
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178756
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)178756
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131880
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-08T09:37:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-08T09:37:46Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21