001     1042381
005     20250804115225.0
024 7 _ |a 10.1109/JPHOT.2025.3568887
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02552
|2 datacite_doi
024 7 _ |a WOS:001506590100005
|2 WOS
037 _ _ |a FZJ-2025-02552
082 _ _ |a 620
100 1 _ |a Wittmann, Ernst
|0 P:(DE-Juel1)194185
|b 0
245 _ _ |a PV Polaris – Automated PV system Orientation Prediction
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747828943_1063
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The orientation of a photovoltaic system is an important parameter for power generation and yield predictions. Yet often, the real orientation is unknown. Measuring the orientation manually is time-consuming. This study introduces an automated Monte Carlo Search based algorithm called PV Polaris which is capable of predicting the systems orientation within 18s, with uncertainties of less than 2° in tilt and 4° in azimuth. In terms of accuracy, PV Polaris outperforms other methods such as measurements with a tilt compensated compass or predictions from satellite images. Applicable at module, string and inverter levels, the algorithm only requires power monitoring data as well as an approximate coordinate as input. Additionally, the algorithm can operate inversely to estimate the system's coordinates based on a given orientation. By using this orientation prediction, it was possible to calculate the yearly yield loss due to non-ideal orientation. For photovoltaic systems we investigated, we found that yearly yield increases between 2.3% to 10.3% could be achieved if the PV systems orientation would be optimized.
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Buerhop-Lutz, Claudia
|0 P:(DE-Juel1)176906
|b 1
700 1 _ |a Bennett, Savannah
|0 P:(DE-Juel1)201624
|b 2
|u fzj
700 1 _ |a Christlein, Vincent
|0 0000-0003-0455-3799
|b 3
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 4
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 5
|u fzj
700 1 _ |a Peters, Ian Marius
|0 P:(DE-Juel1)179536
|b 6
773 _ _ |a 10.1109/JPHOT.2025.3568887
|g p. 1 - 8
|0 PERI:(DE-600)2495610-7
|p 1 - 8
|t IEEE photonics journal
|v
|y 2025
|x 1943-0655
856 4 _ |u https://ieeexplore.ieee.org/document/10999083/authors#authors
856 4 _ |u https://juser.fz-juelich.de/record/1042381/files/APC600664865.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1042381/files/PV_Polaris__Automated_PV_System_Orientation_Prediction.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042381
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176906
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)201624
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)179536
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:39:00Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:39:00Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:39:00Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21