001042382 001__ 1042382
001042382 005__ 20250722090759.0
001042382 0247_ $$2doi$$a10.1080/00036811.2025.2504034
001042382 0247_ $$2ISSN$$a1026-7360
001042382 0247_ $$2ISSN$$a0003-6811
001042382 0247_ $$2ISSN$$a1563-504X
001042382 037__ $$aFZJ-2025-02553
001042382 041__ $$aEnglish
001042382 082__ $$a510
001042382 1001_ $$0P:(DE-HGF)0$$aHughes, Victor$$b0
001042382 245__ $$aTwo direct sampling methods for an anisotropic scatterer with a conductive boundary
001042382 260__ $$bTaylor & Francis$$c2025
001042382 3367_ $$2DRIVER$$aarticle
001042382 3367_ $$2DataCite$$aOutput Types/Journal article
001042382 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753033526_22909
001042382 3367_ $$2BibTeX$$aARTICLE
001042382 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042382 3367_ $$00$$2EndNote$$aJournal Article
001042382 500__ $$aOnline first since 13.5.2025
001042382 520__ $$aIn this paper, we consider the inverse scattering problem associated with an anisotropic medium with a conductive boundary condition. We will assume that the corresponding far–field pattern or Cauchy data is either known or measured. The conductive boundary condition models a thin coating around the boundary of the scatterer. We will develop two direct sampling methods to solve the inverse shape problem by numerically recovering the scatterer. To this end, we study direct sampling methods by deriving that the corresponding imaging functionals decay as the sampling point moves away from the scatterer. These methods have been applied to other inverse shape problems, but this is the first time they will be applied to an anisotropic scatterer with a conductive boundary condition. These methods allow one to recover the scatterer by considering an inner–product of the far–field data or the Cauchy data. Here, we will assume that the Cauchy data is known on the boundary of a region Ω that completely encloses the scatterer D. We present numerical reconstructions in two dimensions to validate our theoretical results for both circular and non-circular scatterers.
001042382 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001042382 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042382 7001_ $$0P:(DE-HGF)0$$aHarris, Isaac$$b1$$eCorresponding author
001042382 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b2
001042382 773__ $$0PERI:(DE-600)1465373-4$$a10.1080/00036811.2025.2504034$$gp. 1 - 31$$p1 - 31$$tApplicable analysis$$vN/A$$x1026-7360$$y2025
001042382 8564_ $$uhttps://www.tandfonline.com/doi/full/10.1080/00036811.2025.2504034
001042382 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b2$$kFZJ
001042382 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001042382 9141_ $$y2025
001042382 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-10$$wger
001042382 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ANAL : 2022$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001042382 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001042382 920__ $$lno
001042382 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001042382 980__ $$ajournal
001042382 980__ $$aEDITORS
001042382 980__ $$aVDBINPRINT
001042382 980__ $$aI:(DE-Juel1)JSC-20090406
001042382 980__ $$aUNRESTRICTED