001042400 001__ 1042400 001042400 005__ 20250610131448.0 001042400 0247_ $$2doi$$a10.1515/ract-2024-0375 001042400 0247_ $$2ISSN$$a0033-8230 001042400 0247_ $$2ISSN$$a2193-3405 001042400 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02554 001042400 0247_ $$2WOS$$aWOS:001442433300001 001042400 037__ $$aFZJ-2025-02554 001042400 082__ $$a610 001042400 1001_ $$0P:(DE-HGF)0$$aUddin, M. Shuza$$b0 001042400 245__ $$aAn overview of production routes of the non-standard positron emitter 86gY with emphasis on a comparative analysis of the 86Sr(p,n)- and 86Sr(d,2n)-reactions 001042400 260__ $$aBerlin$$bDe Gruyter$$c2025 001042400 3367_ $$2DRIVER$$aarticle 001042400 3367_ $$2DataCite$$aOutput Types/Journal article 001042400 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747403113_20757 001042400 3367_ $$2BibTeX$$aARTICLE 001042400 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001042400 3367_ $$00$$2EndNote$$aJournal Article 001042400 520__ $$aA very brief overview of the hitherto investigated production routes of 86gY is given, and a comparative analysis of its production via the two low-energy reactions, namely (p,n) and (d,2n) on 96.4% enriched 86Sr as target material, is presented. Based on our recent cross- section measurements, the calculated yields of 86gY via the two reactions were compared, and the levels of co-produced isotopic impurities were estimated. At low-energy medical cyclotrons (Ep < 20 MeV; Ed <10 MeV) the use of the (p, n) reaction is superior, both in terms of the yield of 86gY and the levels of radionuclidic impurities. At medium-sized cyclotrons, on the other hand, the (d, 2n) reaction leads to higher yield of 86gY, but the level of radionuclidic impurities is also higher. The method of choice for production of 86gY thus remains the (p,n) reaction on enriched 86Sr. 001042400 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001042400 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001042400 7001_ $$0P:(DE-Juel1)131849$$aSpahn, Ingo$$b1$$eCorresponding author 001042400 7001_ $$0P:(DE-HGF)0$$aBasunia, M. Shamsuzzoha$$b2 001042400 7001_ $$0P:(DE-HGF)0$$aVoyles, Andrew S.$$b3 001042400 7001_ $$0P:(DE-Juel1)131850$$aSpellerberg, Stefan$$b4 001042400 7001_ $$0P:(DE-Juel1)196906$$aHussain, Mazhar$$b5 001042400 7001_ $$0P:(DE-HGF)0$$aSudár, Sándor$$b6 001042400 7001_ $$0P:(DE-HGF)0$$aBernstein, Lee A.$$b7 001042400 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8 001042400 7001_ $$0P:(DE-Juel1)131840$$aQaim, Syed M.$$b9 001042400 773__ $$0PERI:(DE-600)2039575-9$$a10.1515/ract-2024-0375$$gVol. 113, no. 5, p. 345 - 351$$n5$$p345 - 351$$tRadiochimica acta$$v113$$x0033-8230$$y2025 001042400 8564_ $$uhttps://juser.fz-juelich.de/record/1042400/files/Overview%20production%20of%2086Y.pdf$$yPublished on 2025-03-13. Available in OpenAccess from 2026-03-13.$$zStatID:(DE-HGF)0510 001042400 909CO $$ooai:juser.fz-juelich.de:1042400$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001042400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131849$$aForschungszentrum Jülich$$b1$$kFZJ 001042400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131850$$aForschungszentrum Jülich$$b4$$kFZJ 001042400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196906$$aForschungszentrum Jülich$$b5$$kFZJ 001042400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b8$$kFZJ 001042400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131840$$aForschungszentrum Jülich$$b9$$kFZJ 001042400 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001042400 9141_ $$y2025 001042400 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18 001042400 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18 001042400 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001042400 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 001042400 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18 001042400 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18 001042400 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18 001042400 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18 001042400 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIOCHIM ACTA : 2022$$d2024-12-18 001042400 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18 001042400 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18 001042400 920__ $$lyes 001042400 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0 001042400 980__ $$ajournal 001042400 980__ $$aVDB 001042400 980__ $$aUNRESTRICTED 001042400 980__ $$aI:(DE-Juel1)INM-5-20090406 001042400 9801_ $$aFullTexts