001     1042404
005     20250804115211.0
024 7 _ |a 10.3390/foods14020204
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02558
|2 datacite_doi
024 7 _ |a 39856870
|2 pmid
024 7 _ |a WOS:001404119000001
|2 WOS
037 _ _ |a FZJ-2025-02558
082 _ _ |a 640
100 1 _ |a Olewnik-Kruszkowska, Ewa
|0 0000-0002-8407-0078
|b 0
|e Corresponding author
245 _ _ |a Comparative Study of Crucial Properties of Packaging Based on Polylactide and Selected Essential Oils
260 _ _ |a Basel
|c 2025
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753692100_21155
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% v/v solutions of ethanol, 3% w/v acetic acid solution, and isooctane, were among the critical studies conducted. A comparison of the properties of the obtained materials allowed us to establish that the incorporation of essential oils significantly increases elongation at break and enhances UV barrier properties. In the case of materials containing clove oil and tea tree oil, a reduction in WVTR of about 1 g/m²/h was observed. The migration of the ingredients present in the films filled with clove oil, grapefruit oil, and tea tree oil into the acetic acid solution did not exceed 10 mg/kg, which is an acceptable value according to the European Union restrictions. Taking into account all of the studied properties, it should be stressed that the most promising packaging material is the film filled with clove oil.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vishwakarma, Astha
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wrona, Magdalena
|0 P:(DE-Juel1)204447
|b 2
700 1 _ |a Bertella, Anis
|0 0000-0003-4718-0099
|b 3
700 1 _ |a Rudawska, Anna
|0 0000-0003-3592-8047
|b 4
700 1 _ |a Gierszewska, Magdalena
|0 0000-0001-8935-4857
|b 5
700 1 _ |a Schmidt, Beata
|0 0000-0001-6274-2278
|b 6
773 _ _ |a 10.3390/foods14020204
|g Vol. 14, no. 2, p. 204 -
|0 PERI:(DE-600)2704223-6
|n 2
|p 204 -
|t Foods
|v 14
|y 2025
|x 2304-8158
856 4 _ |u https://juser.fz-juelich.de/record/1042404/files/foods-14-00204.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042404
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)204447
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FOODS : 2022
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FOODS : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:28:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:28:06Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:28:06Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21