001042415 001__ 1042415
001042415 005__ 20250912110148.0
001042415 0247_ $$2doi$$a10.1088/2516-1075/adbaa0
001042415 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02563
001042415 0247_ $$2WOS$$aWOS:001438651000001
001042415 037__ $$aFZJ-2025-02563
001042415 082__ $$a621.3
001042415 1001_ $$0P:(DE-Juel1)179506$$aHilgers, Robin$$b0$$eCorresponding author
001042415 245__ $$aApplication of batch learning for boosting high-throughput ab initio success rates and reducing computational effort required using data-driven processes
001042415 260__ $$aPhiladelphia, PA$$bIOP Publishing Ltd.$$c2025
001042415 3367_ $$2DRIVER$$aarticle
001042415 3367_ $$2DataCite$$aOutput Types/Journal article
001042415 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754985418_31288
001042415 3367_ $$2BibTeX$$aARTICLE
001042415 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042415 3367_ $$00$$2EndNote$$aJournal Article
001042415 520__ $$aThe increased availability of computing time, in recent years, allows for systematic high-throughput studies of material classes. Such studies serve the purpose of both screening for materials with remarkable properties and understanding how structural configuration and material composition affect macroscopic attributes manifestation. However, when conducting systematic high-throughput studies, the individual ab initio calculations’ success depends on the quality of the chosen input quantities. On a large scale, improving input parameters by trial and error is neither efficient nor systematic. We present a systematic, high-throughput compatible, and machine learning (ML)-based approach to improve the input parameters optimized during a density functional theory computation or workflow. This approach of integrating ML into a typical high-throughput workflow demonstrates the advantages and necessary considerations for a systematic study of magnetic multilayers of 3d transition metal layers on FCC noble metal substrates. For 6660 film systems, we were able to improve the overall success rate of our high-throughput FLAPW-based structural relaxations from 64.8% to 94.3% while at the same time requiring 17% less computational time for each successful relaxation.
001042415 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001042415 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042415 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b1
001042415 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
001042415 773__ $$0PERI:(DE-600)2953581-5$$a10.1088/2516-1075/adbaa0$$gVol. 7, no. 1, p. 015005 -$$n1$$p015005 -$$tElectronic structure$$v7$$x2516-1075$$y2025
001042415 8564_ $$uhttps://juser.fz-juelich.de/record/1042415/files/2311.15430v1.pdf$$yOpenAccess
001042415 8564_ $$uhttps://juser.fz-juelich.de/record/1042415/files/Hilgers_2025_Electron._Struct._7_015005.pdf$$yOpenAccess
001042415 8767_ $$d2025-05-16$$eHybrid-OA$$jPublish and Read$$zQ1 2025
001042415 909CO $$ooai:juser.fz-juelich.de:1042415$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001042415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179506$$aForschungszentrum Jülich$$b0$$kFZJ
001042415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b1$$kFZJ
001042415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001042415 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001042415 9141_ $$y2025
001042415 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001042415 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001042415 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001042415 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042415 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTRON STRUCT : 2022$$d2024-12-18
001042415 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-18
001042415 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001042415 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001042415 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042415 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001042415 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001042415 920__ $$lyes
001042415 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001042415 980__ $$ajournal
001042415 980__ $$aVDB
001042415 980__ $$aUNRESTRICTED
001042415 980__ $$aI:(DE-Juel1)PGI-1-20110106
001042415 980__ $$aAPC
001042415 9801_ $$aAPC
001042415 9801_ $$aFullTexts