Home > Publications database > Application of batch learning for boosting high-throughput ab initio success rates and reducing computational effort required using data-driven processes > print |
001 | 1042415 | ||
005 | 20250912110148.0 | ||
024 | 7 | _ | |a 10.1088/2516-1075/adbaa0 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-02563 |2 datacite_doi |
024 | 7 | _ | |a WOS:001438651000001 |2 WOS |
037 | _ | _ | |a FZJ-2025-02563 |
082 | _ | _ | |a 621.3 |
100 | 1 | _ | |a Hilgers, Robin |0 P:(DE-Juel1)179506 |b 0 |e Corresponding author |
245 | _ | _ | |a Application of batch learning for boosting high-throughput ab initio success rates and reducing computational effort required using data-driven processes |
260 | _ | _ | |a Philadelphia, PA |c 2025 |b IOP Publishing Ltd. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1754985418_31288 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The increased availability of computing time, in recent years, allows for systematic high-throughput studies of material classes. Such studies serve the purpose of both screening for materials with remarkable properties and understanding how structural configuration and material composition affect macroscopic attributes manifestation. However, when conducting systematic high-throughput studies, the individual ab initio calculations’ success depends on the quality of the chosen input quantities. On a large scale, improving input parameters by trial and error is neither efficient nor systematic. We present a systematic, high-throughput compatible, and machine learning (ML)-based approach to improve the input parameters optimized during a density functional theory computation or workflow. This approach of integrating ML into a typical high-throughput workflow demonstrates the advantages and necessary considerations for a systematic study of magnetic multilayers of 3d transition metal layers on FCC noble metal substrates. For 6660 film systems, we were able to improve the overall success rate of our high-throughput FLAPW-based structural relaxations from 64.8% to 94.3% while at the same time requiring 17% less computational time for each successful relaxation. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wortmann, Daniel |0 P:(DE-Juel1)131042 |b 1 |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 2 |
773 | _ | _ | |a 10.1088/2516-1075/adbaa0 |g Vol. 7, no. 1, p. 015005 - |0 PERI:(DE-600)2953581-5 |n 1 |p 015005 - |t Electronic structure |v 7 |y 2025 |x 2516-1075 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1042415/files/2311.15430v1.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1042415/files/Hilgers_2025_Electron._Struct._7_015005.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1042415 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)179506 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131042 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130548 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2025 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a TIB: IOP Publishing 2022 |0 PC:(DE-HGF)0107 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELECTRON STRUCT : 2022 |d 2024-12-18 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|