001     1042415
005     20250912110148.0
024 7 _ |a 10.1088/2516-1075/adbaa0
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02563
|2 datacite_doi
024 7 _ |a WOS:001438651000001
|2 WOS
037 _ _ |a FZJ-2025-02563
082 _ _ |a 621.3
100 1 _ |a Hilgers, Robin
|0 P:(DE-Juel1)179506
|b 0
|e Corresponding author
245 _ _ |a Application of batch learning for boosting high-throughput ab initio success rates and reducing computational effort required using data-driven processes
260 _ _ |a Philadelphia, PA
|c 2025
|b IOP Publishing Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754985418_31288
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The increased availability of computing time, in recent years, allows for systematic high-throughput studies of material classes. Such studies serve the purpose of both screening for materials with remarkable properties and understanding how structural configuration and material composition affect macroscopic attributes manifestation. However, when conducting systematic high-throughput studies, the individual ab initio calculations’ success depends on the quality of the chosen input quantities. On a large scale, improving input parameters by trial and error is neither efficient nor systematic. We present a systematic, high-throughput compatible, and machine learning (ML)-based approach to improve the input parameters optimized during a density functional theory computation or workflow. This approach of integrating ML into a typical high-throughput workflow demonstrates the advantages and necessary considerations for a systematic study of magnetic multilayers of 3d transition metal layers on FCC noble metal substrates. For 6660 film systems, we were able to improve the overall success rate of our high-throughput FLAPW-based structural relaxations from 64.8% to 94.3% while at the same time requiring 17% less computational time for each successful relaxation.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 1
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 2
773 _ _ |a 10.1088/2516-1075/adbaa0
|g Vol. 7, no. 1, p. 015005 -
|0 PERI:(DE-600)2953581-5
|n 1
|p 015005 -
|t Electronic structure
|v 7
|y 2025
|x 2516-1075
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1042415/files/2311.15430v1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1042415/files/Hilgers_2025_Electron._Struct._7_015005.pdf
909 C O |o oai:juser.fz-juelich.de:1042415
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131042
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTRON STRUCT : 2022
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21