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Functional specialization of brain areas and subregions, as well as their inte-
gration into large-scale networks, are key principles in neuroscience. Con-
solidating both local and global perspectives on cortical organization,
however, remains challenging. Here, we present an approach to integrate
inter- and intra-areal similarities of microstructure, structural connectivity,
and functional interactions. Using high-field in-vivo 7 tesla (7 T) Magnetic
Resonance Imaging (MRI) data and a probabilistic post-mortem atlas of cortical
cytoarchitecture, we derive multimodal gradients that capture cortex-wide
organization. Inter-areal similarities follow a canonical sensory-fugal gradient,
linking cortical integration with functional diversity across tasks. However,
intra-areal heterogeneity does not follow this pattern, with greater variability
in association cortices. Findings are replicated in an independent 7 T dataset
and a100-subject 3 tesla (3 T) cohort. These results highlight a robust coupling
between local arealization and global cortical motifs, advancing our under-
standing of how specialization and integration shape human brain function.

Understanding how the spatial organization of the human brain gives
rise to cognitive functions is a challenging, yet fundamental goal for
human neuroscience'. Complex brain networks at multiple scales arise
from overlapping variations in cortical microstructure, function, and
connectivity>*. This network involves both the global integration and
local specialization of cortical regions, giving rise to distributed func-
tional communities that enable complex computations®”’. Global
integration prominently manifests within higher-order systems, nota-
bly the transmodal association cortex, which engages in increasingly

abstract and self-generated cognition®™. In contrast, local functional
specialization is more frequent in sensory and motor regions that
interact more closely with the here and now®**', The interplay
between contrasting local and global motifs contributes to the hier-
archical organization of the brain, underpinning segregated and inte-
grative information processing across different cognitive functions.
Mapping structural and functional descriptors to define discrete
brain areas is essential for understanding hierarchical brain organiza-
tion at macroscale. Constructing precise maps of cortical areas has
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been a long-standing objective in neuroanatomy, as it reduces com-
plexity and bias when studying brain regions and inter-regional
relationships™’~°. Cytoarchitecture, encompassing the arrangement,
distribution, composition, and layering of cells, has emerged as a gold
standard to define areas’. Microstructural insight from this
post-mortem approach enhances our understanding of connectivity
patterns and can illuminate the role of a region in cortical functioning.
However, the microstructural patterns in the human brain and their
relation to cortical function remain challenging to address in a sys-
tematic manner due to the constraints of invasive techniques.
Recently, a 3D probabilistic atlas of human brain cytoarchitecture' has
been made available, offering valuable opportunities for examining
both the micro- and macro-organization of the human brain, and for
contrasting local specialization with global integration. It can, thus,
help to guide investigations of structure-function association across
the cortical manifold within defined areal subunits.

Gradual changes in cortical organization at macroscale have been
described as well, even in early work®. While atlases of cortical areas
discretize the brain into non-overlapping constituents, recent advan-
ces emphasize a potential complementary utility of using dimensional
descriptions of the cortex. Such a perspective can help to account for
cytoarchitectonic changes within an area (e.g., ocular dominance col-
umns, border tuft and fringe area in the visual cortex), as well as
changes occurring at macroscale between different cortical areas®.
Recent work in computational anatomy has confirmed that such
complementary descriptions of macroscale cortical organization can
be derived from eigenvector decomposition of cortex-wide similarities
in neural patterns (commonly known as cortical gradients***). These
gradients differentiate cortical systems in an ordered and continuous
manner, and can be applied to different types of neural data, both
based on in vivo neuroimaging as well as post-mortem histology.
Notably, converging hierarchical trends, spanning from sensory to
transmodal regions, were observed across microstructural’>** and
functional gradients”*. These multiple dimensions can effectively
capture nuanced patterns of cortical organization®, and may provide
synergy in understanding subregional heterogeneity and functional
multiplicity of different cortical areas”. More broadly, gradient map-
ping techniques have robustly differentiated transmodal association
cortices from primary sensory/motor systems, mirroring their hier-
archical contributions to cognition. In effect, such gradients have been
found to align with functionally relevant properties, including dis-
proportionate expansion during primate evolution®*** reduced her-
itability and increased experience-dependent plasticity”-**, increased
network idiosyncrasy*, and the balance of internal vs. externally
oriented processing® . Moreover, gradients may help to potentially
account for recent findings showing that functional activation pat-
terns, as well as functional connectivity, can shift across different
contexts and individuals®™°,

Local vs. global organization can be interrogated at the level of
microstructure (e.g., cytoarchitecture), connectivity, and function. In
this context, MRI serves as an ideal technique to bridge structure and
function across varying spatial scales*-*2. T1 relaxometry is sensitive to
cortical microstructure and myelination****, diffusion MRI tracto-
graphy approximates structural connectivity**¢, and resting-state
functional MRI (rs-fMRI) has delineated macroscopic functional
networks***5, Notably, while conventional MRI acquisitions at field
strengths of 3 T and below may have limitations in terms of resolution
and signal, recent in vivo studies that have moved to high fields of 7T
and above have benefitted from enhanced resolution, sensitivity, and
biological specificity**~". In addition, imaging paradigms that combine
multiple MRI datasets acquired across different scanning sessions in a
given individual have been shown to further increase precision for the
analysis of microstructure®, connectivity****, and function®>*. Several
of such “precision neuroimaging” datasets have already led to an
advanced characterization of functional systems®*” or fostered

enhanced microstructural modeling, but previous precision imaging
datasets were either prioritizing functional or structural imaging
acquisitions, and rarely both in the same subjects. Moreover, prior
precision imaging investigations were mainly carried out at 3 T. In this
study, we expand this work by leveraging a recently introduced pre-
cision neuroimaging (PNI) dataset®®, which combines repeated high-
resolution structural and functional acquisitions at 7 T, offering an
opportunity to interrogate cortical organization in the living human
brain with high sensitivity and specificity.

The current work examined the interplay of local cortical area-
lization and global integration. Leveraging probabilistic cytoarchitec-
tonic maps of the recently disseminated Julich-Brain atlas’®, we
subdivided the cortex into 228 areas. In those, we profiled micro-
structural, structural, and functional gradients derived from repeated
7T MRI scans. We then examined how multimodal gradient profiles
differed across areas. As local-global cortical organization is pre-
sumably tied to cognitive functional architecture, we cross-referenced
our maps to multiple fMRI tasks conducted in the same participants,
and in particular studied the relation between inter-areal gradient
profiles and functional diversity across different tasks acquired in the
same subjects. The main analyzes were replicated using different
parcellation atlases and datasets to validate the robustness and relia-
bility of our findings. By integrating measures of cortical cytoarchi-
tecture with multimodal high-definition MRI, our work sheds light on
local-global cortical organization and advances our understanding of
cortical structure-function relationships.

Results

Bridging local and global cortical organization

We constructed high-resolution cortex-wide connectomes, encom-
passing microstructural profile covariance (MPC)*, structural con-
nectivity (SC)*°, and functional connectivity (FC)***°, in 10 healthy
adults who underwent three repeated multimodal MRI scans at 7T
(Fig. 1A). We estimated connectome eigenvectors that characterized
spatial gradients of MPC, SC, and FC, focusing on the first five gra-
dients in each modality, which explained most of the variance (MPC:
31%; SC: 18%; FC: 25%). In line with prior work?, the principal MPC
gradient was anchored on one end by primary sensory areas and on the
other end by paralimbic regions. The principal SC gradient exhibited
anterior-posterior axis, clearly dividing the cortex into two parts
bounded by sensorimotor areas, as reported previously®'. The first FC
gradient differentiated sensory and motor cortices from the default
mode network, recapitulating earlier work?>®°, Other gradients were
also in keeping with prior reports (Fig. 1A)*°°°. To ensure equal
contribution from each modality, we normalized the gradients within
each modality and then averaged them in areas derived from the
Julich-Brain atlas (Fig. 1B). The Julich-Brain atlas enables the investi-
gation of structure-function association within cytoarchitectonically
defined cortical subunits, though it does not cover the full cortex
(please see the replication analyzes, where a cortex-wise parcellation
was used). This process generated an area-wise gradient profile matrix.
This matrix captures most of the information in multimodal con-
nectomes, making it an ideal measure for investigating inter-areal
differences and similarities.

Inter-areal patterns of local-global integration

We examined the similarity and differences of gradient profiles
between different areas. To this end, we first conducted a principal
component analysis (PCA) on the multimodal gradient profiles. These
gradient profiles were reordered based on their principal component
(which explained 29.6% of the variation), following a sensory-fugal axis
anchored on prefrontal/cingulate regions on the one end and central/
occipital regions on the other (Fig. 1C). This approach integrates sali-
ent features of its constituents (i.e., the individual MPC, SC, and FC
gradients) in a synoptic manner, suggesting an overarching principle
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of cortical organization across multiple modalities. The reordered
gradient profiles located in the middle and at the two ends of the main
axis were examined and showed diverse patterns (Fig. 1C). Specifically,
we observed that the bottom region of the PCA axis, corresponding to
sensorimotor areas, exhibited lower gradient z-scores for MPCGI1 and
FCGI and higher scores for SCG1 and SCG2. This pattern suggests that
the sensorimotor network represents one end of the hierarchy across
all modalities. At the opposite end of the PCA axis, regions in the
inferior frontal sulcus showed the reverse pattern, representing the
other extreme of the hierarchy. In contrast, the middle region dis-
played a relatively uniform z-score distribution, suggesting its role in
linking higher-order and lower-order regions for multimodal infor-
mation processing.

To further quantify area-to-area differences, we computed an
inter-areal cosine distance matrix based on the original multimodal

A. Generation of multimodal cortical gradients
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Fig. 1| Integration of global cortical gradients with cortical arealization.

A Cortex-wide connectomes were constructed from microstructural profile cov-
ariance (MPC)?, structural connectivity (SC)***, and functional connectivity
(FC)**° at a vertex-level based on repeated 7 T MRI. We applied non-linear
dimensionality reduction techniques'” to each connectome and aggregated the
first five eigenvectors/gradients. B Probabilistic area definitions were derived from
the Julich-Brain atlas'®, a post-mortem cytoarchitectonic atlas based on the mapping
of areas of ten postmortem brains, and their superimposition in MNI space. Please
note that this probabilistic atlas does not cover the entire cortex. C We averaged

gradient profiles (Fig. 2A). The mean value of each row in this matrix
indicates the overall dissimilarity of a given area from all other areas in
terms of the multimodal gradient profiles. To identify cortical areas
with significantly higher/lower dissimilarity compared to all other
areas, we conducted spatial permutation tests (1000 permutations)
that randomly rotated the Julich-Brain atlas on a sphere®’. We found
significant and highest inter-areal dissimilarity in sensorimotor regions
(pspin < 0.05, false discovery rate (FDR) correction; Fig. 2A), indicating
that these areas are the most unique across the cortex in terms of their
multidimensional gradient profiles. Conversely, we observed the low-
est dissimilarity in insular and fronto-temporal regions after spatial
permutation tests (pspin<0.05, FDR correction). This suggests that
sensorimotor areas are most segregated within the overall cortical
hierarchy, supporting functional specialization. Although inter-areal
dissimilarity was found to correlate with temporal signal-to-noise ratio

Multimodal gradients

Multimodal gradients of 228 areas

microstructural _ structural functional

[ ]
-1 1

Area-wise PCA axis

Reordered gradient profiles

vertex-wise gradients in each of the 228 areas, producing area-specific multimodal
gradient profiles. These gradient profiles were reordered according to their prin-
cipal component to assess inter-areal similarity. Left panel: the reordered gradient
profiles located in the middle and at the two ends of the main axis were visualized in
spider plots. Source data are provided as a Source Data file. Middle panel: the
reordered multimodal gradient profiles. Right panel: the first principal component
from the original multimodal gradient profiles. Abbreviation: PCA principal com-
ponent analysis, WM white matter.
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A. Inter-areal dissimilarity patterns
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D. Intra-areal dissimilarity in cortical hierarchies and associations with histological gradient
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(tSNR) map (r=0.66, pspin <0.00L; Supplementary Table 1), no sig-
nificant correlations were observed with other technical imaging
metrics, including the Bl+ field map (r=-0.05, pgpin=0.22), the
contrast-to-noise ratio (CNR) map from Tl scans (r=0.12, pspin = 0.28),
or the SNR map from diffusion scans (r=-0.11, psyin=0.34). To
investigate functional integration patterns, we estimated the partici-
pation coefficient (PC)**> and global FC strength. Positive, but non-
significant, correlations were observed between these metrics and
inter-areal dissimilarity (PC: rho = 0.13, pspin > 0.05; global FC strength:

rho=0.32, pspin>0.05). Similar findings were observed when calcu-
lating these metrics based on group-level resting-state FC (PC: rho =
0.13, pspin > 0.05; global FC strength: rho = 0.36, pspin > 0.05).

To gain a deeper understanding of these patterns, we investigated
the distribution of inter-areal dissimilarity across four cortical hier-
archical levels derived from a prior taxonomy of the primate brain
proposed by Mesulam®’. Using a two-sample t-test, we compared
overall inter-areal dissimilarity between each pair of cortical hier-
archical levels (i.e., paralimbic, heteromodal, unimodal, and idiotypic).
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Fig. 2 | Inter- and intra-areal heterogeneity. A We calculated the cosine distance
between each pair of cortical areas and computed the mean value for each area. To
identify cortical areas with the highest and lowest inter-areal dissimilarity, we
conducted 1000 permutation tests®’. Regions with significantly higher inter-areal
dissimilarity compared to other areas after applying FDR correction were high-
lighted using black boundaries (p < 0.05). B The left panel illustrates the distribu-
tion of inter-areal dissimilarity across four cortical hierarchies. To examine
differences between each cortical hierarchical level, two-sided two-sample t-tests
were conducted with FDR correction (correlations with *: prpg < 0.05; correlations
with **: pppr < 0.001). Sample sizes: Paralim (45), Hetero (75), Uni (79), and Idio (29);
all are technical replicates. Box plots display the median (center line), interquartile
range (box bounds = 25th to 75th percentiles), and whiskers extending to the
minimum and maximum values within 1.5x the interquartile range (IQR). Bars are
color-coded as follows: blue for paralimbic, orange for heteromodal, green for
unimodal, and red for idiotypic. To explore associations with the histological gra-
dient, two-sided Spearman’s correlation coefficients were computed (p = 0.001),
and p values corrected using spin permutation tests®>. C The gradient profile of

parcel i was calculated by averaging the gradients across all vertices belonging to
parcel i. The intra-areal dissimilarity of parcel i was then determined by calculating
cosine distance between vertex-wise gradients and gradient profile of parcel i. By
repeating this procedure for all parcels, we generated a map illustrating the dis-
tribution of intra-areal dissimilarity across the cortex. Regions with significantly
higher intra-areal dissimilarity compared to other areas after applying FDR cor-
rection were highlighted using black boundaries (p < 0.05). D The distribution of
vertex-wise intra-areal dissimilarity in four cortical hierarchies is shown in the left
panel. To assess differences between each cortical hierarchy, two-sided two-sample
t-tests were performed with FDR correction (correlations with *: pgpr < 0.05).
Sample sizes: Paralim (789), Hetero (2,342), Uni (2,403), and Idio (1779); all are
technical replicates. Box plots display the median (center line), interquartile range
(box bounds =25th to 75th percentiles), and whiskers extending to the minimum
and maximum values within 1.5x the IQR. To explore associations with the histo-
logical gradient, two-sided Spearman’s correlation coefficient was computed with
FDR correction. Source data are provided as a Source Data file. Abbreviation:
Paralim Paralimbic, Hetero Heteromodal, Uni Unimodal, Idio Idiotypic.

The results revealed that the idiotypic system had the highest inter-
areal dissimilarity compared to other systems (e.g., Unimodal vs Idio-
typic: t=-4.73, pspin=0.001, Cohen’s d=-0.99, 95% CI=[-0.068,
-0.028], FDR correction, Fig. 2B). In contrast, paralimbic systems
showed lowest inter-areal dissimilarity (e.g., Paralimbic-vs-Hetero-
modal: £=-9.16, pspin=0.001, Cohen’s d=-1.46, 95% CI=[-0.089,
-0.058], FDR correction), aligning with prior findings. To further
explore associations between inter-areal dissimilarity and cortical
microstructure, we generated a MPC matrix of histological data
obtained from the BigBrain dataset®, a 3D reconstruction of post-
mortem human brain histology, and estimated its principal gradient.
This gradient has previously been shown to closely recapitulate
Mesulam’s taxonomy of cortical hierarchical organization. In effect, we
also observed a significant correlation between the histological gra-
dient and inter-areal dissimilarity (rho=-0.61, pspin=0.001, 95%
Cl=[-0.706, —0.552]), supporting a close association between regional
cytoarchitecture and macroscale organization.

To examine inter-areal similarities using an alternative
approach, we performed hierarchical clustering on cortical simi-
larity matrices and found equivalent results, providing four
robust clusters recapitulating sensory-fugal hierarchies (Supple-
mentary Fig. 1).

We furthermore explored the layout within each parcel to better
understand local organization. Here, we calculated the cosine distance
between the gradient profile of each cortical vertex and the mean
gradient profile of the area to which it belongs, as a measure of intra-
areal dissimilarity (Fig. 2C). We found that intra-areal dissimilarity was
considerably lower compared to inter-areal dissimilarity (which also
confirms the utility of the used parcellation). The medial supplemen-
tary motor areas exhibited highest intra-areal dissimilarity (pspin < 0.05,
spatial permutation tests, FDR correction), while the medial orbito-
frontal cortex showed the lowest values under the same statistical
threshold. Additionally, we found that intra-areal dissimilarity was
positively correlated with parcel size (rho=0.44, psyi, =0.001). Com-
paring vertex-wise intra-areal dissimilarity across hierarchical levels,
we did not observe the same relationship between different levels as
for inter-areal dissimilarity. In fact, there was a trend indicating that
intra-areal dissimilarity was higher in heteromodal and unimodal
association systems compared to idiotypic and paralimbic regions,
though this difference was only marginally significant (Paralimbic vs
Heteromodal: t=-6.03, psin=0.042, Cohen’s d=-0.25, 95%
CI=[-0.019, -0.010]; Paralimbic vs Unimodal: ¢ =-6.54, pspin = 0.045,
Cohen’s d=-0.26, 95% Cl=[-0.021, -0.011], FDR correction; Fig. 2D).
Moreover, there was no significant association to the histological
gradient derived from BigBrain (rho=-0.17, pspin=0.12, 95% Cl=
[-0.280, -0.035]).

Associations to functional diversity across task states

The cortical layout is intricately linked to cognition®>°. To investigate
how functional connectivity patterns change across diverse cognitive
states, we administered nine different fMRI tasks, including episodic
memory encoding and retrieval, semantic retrieval, mnemonic simi-
larity task (MST), and four passive movie watching paradigms in the
same participants at 7 T. Functional connectivity for all cognitive states
was constructed by cross-correlating the vertex-wise timeseries. We
then calculated the cosine distance between the corresponding whole
brain functional connectivity matrices to estimate cross-task diversity
for each area (Supplementary Fig. 2). Focusing on overall diversity, we
calculated the average of values across all tasks to generate the cross-
task diversity map (Fig. 3A). We observed highest functional diversity
in the medial temporal lobe and orbitofrontal cortex, while lower
diversity in the medial frontal lobe and primary sensory cortex
(Fig. 3B). To further explore how this functional diversity relates to
cortical organization, we assessed associations between the cross-task
diversity map and inter-areal dissimilarity. This was done by comput-
ing Spearman’s correlation coefficient and correcting p values using
1000 spin permutation tests. Notably, we identified a marked corre-
lation between cross-task diversity and inter-areal dissimilarity (rho =
—0.71, pspin=0.001, 95% CI=[-0.738, -0.583]; Fig. 3B). To control for
potential influences from image quality, we performed partial corre-
lation analyzes. The results remained consistent when controlling for
tSNR  (rho=-0.46, pspin=0.001), Bl+ field map (rho=-0.71,
Pspin=0.001), CNR from the TI data (rho=-0.70, pspin =0.001), and
SNR from the diffusion data (rho=-0.71, pspin =0.001). The results
were consistent when we excluded regions with lowest tSNR
(rho=-0.70, pspin=0.001). As expected, paralimbic areas exhibited
more variable connectivity across different tasks, suggesting a more
flexible functional integration into large-scale networks. In contrast,
primary cortices showed less variable patterns, potentially supporting
their more fixed functional specialization. Again, we only found a weak
association with intra-areal dissimilarity (rho = -0.19, pspin = 0.065, 95%
Cl=[-0.254, -0.056)).

We also investigated how intra-areal functional connectivity pat-
terns changed across different task contexts (Fig. 3C). Here, we defined
intra-areal cross-task diversity as the standard deviation between
vertex-wise FC across different tasks, with the effect of parcel size
controlled. We observed highest intra-areal diversity in the superior
temporal lobe, while lower diversity was observed in paralimbic cor-
tex. By computing Spearman’s correlation coefficient, we identified a
significant correlation between intra-areal diversity and inter-areal
diversity (rho=-0.49, pspin=0.001, 95% CI=[-0.603, —0.407]). This
correlation remained significant when controlling for tSNR as a cov-
ariate (rho=-0.48, pspin=0.001; Fig. 3C). No significant correlation
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was computed, and p values were corrected using spin permutation tests. C By
taking the average of each row of the vertex-wise FC within area and calculating the
standard deviation (SD) across tasks, we generated the vertex-wise cross-task SD.
Taking the average of all SDs within an area and repeating this procedure for all
areas, we generated the intra-areal cross-task diversity map. Two-sided Spearman’s
correlation coefficient was computed, and p values were corrected using spin
permutation tests. Source data are provided as a Source Data file. Abbreviation: FC
functional connectivity.

was observed between intra-areal diversity across tasks and intra-areal
dissimilarity in gradient profiles, however.

Robustness with respect to analysis parameters and
parcellation atlas

To assess robustness of our findings with respect to analysis para-
meters, we recalculated gradients, gradient profiles, as well as inter-
and intra-areal gradient profile dissimilarity for each modality using
different thresholds of the connectivity matrix (50%, 60%, 70%, 80%,
90%). Correlations between inter- and intra-areal dissimilarity derived
from gradient profiles with different thresholds were assessed,
revealing consistent results (Supplementary Fig. 3). Moreover, we
investigated the impact of varying the number of gradients within each
modality, ranging from three to seven. Inter- and intra-areal dissim-
ilarity was estimated, and consistent results were observed across

different numbers (Supplementary Fig. 3). To assess the effect of using
different parcellation atlases, the main results were replicated using
the Glasser atlas’. This atlas is purely MRI-based, but aggregates
information from different modalities and offers whole-cortex cover-
age. Again, consistent results were observed when using this atlas
(Supplementary Fig. 4).

Reliability at the single-subject level

We assessed our findings at each of the ten individual participants who
were scanned at 7 T. Similar results were found across all participants,
including gradient profile matrices (Fig. 4A), and measures in inter- and
intra-areal dissimilarity (Supplementary Fig. 5). Moreover, we observed
marked negative correlations between inter-areal dissimilarity and the
histological gradient (rho = -0.58 + 0.047, ranged from -0.63 to -0.49,
all pspin <0.001), and between inter-areal dissimilarity and cross-task
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diversity (rho=-0.53+0.067, ranged from -0.64 to -0.45, all examine the effect of sex, we conducted sex-disaggregated analyzes
Pspin < 0.001). Inter-areal dissimilarity across participants was highly  on the main results and observed consistent findings across both male
correlated (r=0.90+0.008; Fig. 4B). Also, intra-areal dissimilarity and female subgroups.

across participants was highly correlated (r=0.76 + 0.007; Fig. 4C).

Individual-level intra-areal dissimilarity was considerably lower com-  Replication at 7 T
pared to inter-areal dissimilarity, and no significant associations to the =~ We conducted replication analysis based on 12 healthy young adults
histological gradient or cross-task diversity were observed. To (age:29.75+4.75 years, 7 females) with one session scanned at 7 T. We
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Fig. 4 | Reliability analysis at the single subject level. A For each of the 10
subjects, we generated gradient profiles and inter-/intra-areal dissimilarity. Asso-
ciations between individual inter-areal dissimilarity and histological gradient, as
well as cross-task diversity were examined using Spearman’s correlation coeffi-
cients. B Associations between individual inter-areal dissimilarity were estimated
using two-sided Pearson’s correlation. Distributions of rho values between inter-
areal dissimilarity and histological gradient (mean + SD of rho values=-0.58 +
0.047; sample sizes n =10, with 10 biological replicates), and with cross-task
diversity were examined (mean + SD of rho values =-0.53 + 0.067; sample sizes
n =10, with 10 biological replicates). Box plots display the mean (center line = 50%
of the group), interquartile range (box bounds = 25th to 75th percentiles), and

whiskers extending to the minimum and maximum values within 1.5x the inter-
quartile range (IQR). C Associations between individual intra-areal dissimilarity
were estimated using two-sided Pearson’s correlation. Distributions of rho values
between inter-areal dissimilarity and histological gradient (mean + SD of rho
values=-0.19 + 0.051; n=10, with 10 biological replicates), and with cross-task
diversity were examined (mean + SD of rho values =-0.21+ 0.069; n =10, with 10
biological replicates). Box plots display the mean (center line = 50% of the group),
interquartile range (box bounds = 25th to 75th percentiles), and whiskers extending
to the minimum and maximum values within 1.5x the IQR. Abbreviation: MP2RAGE
magnetization-prepared 2 rapid gradient echo. Source data are provided as a
Source Data file.

observed consistent results as for the main findings (Supplementary
Fig. 6), supporting reproducibility.

Replication at 3T

We conducted a second replication analysis in an independent sample
of 100 healthy adults (age: 34.33 + 4.07 years, 47 females) scanned at
3 T°. Results were consistent, with similar multimodal gradients, gra-
dient profiles, and inter-areal dissimilarity (Supplementary Fig. 7A, B).
Notably, associations with histological gradients (rho=-0.40,
Pspin<0.001) and cross-task diversity (rho=-0.59, pspin<0.001)
remained consistent, albeit with slightly smaller effects as for the 7 T
dataset. Again, we observed only a marginal association between intra-
areal dissimilarity and cross-task diversity (rho=-0.09, pspin>0.1;
Supplementary Fig. 7C), with no significant correlation found for his-
tological gradients.

Discussion

Functional specialization and integration are two cornerstones of
neural organization®”°%, While specialization relates to distinctive
neural behavior across different contexts®, functional integration
emphasizes the shared influence among regions, ultimately con-
tributing to coherent experiences and behavior®*’°. The present study
combined multimodal MRI acquisitions with robust areal descriptions
of cortical cytoarchitecture”, in order to identify the similarity and
divergence of inter-areal gradient fingerprints. Vertex-wise multimodal
connectomes were constructed from high-field 7T MRI data, and
cortical gradients were estimated, aligning with those described in
prior studies®®**°, We noted higher inter-areal dissimilarity in sen-
sorimotor cortices and lower inter-areal dissimilarity in the transmodal
system, indicating the distinctiveness of the primary sensory cortex as
a functionally specialized system. Additionally, functional connectivity
in the primary cortex exhibited less variability across tasks, suggesting
that information processing from different tasks may converge at early
stages. Significant associations were identified between cross-task
functional diversity and inter-areal gradient profile dissimilarity, indi-
cating a link between global cortical motifs and functional flexibility
across different task contexts. These findings suggest a sensory-
paralimbic differentiation in cortical gradient profiles, providing
insights into neural motifs contributing to specialized and integrative
brain function.

The availability of multimodal neuroimaging data offers oppor-
tunities for examining brain organization across different spatial
scales'**2, In this work, we leveraged repeated MRI scanning at ultra-
high fields of 7 T, which we hypothesized would result in high signal™,
reliability, and precision®". The first principal component of our
estimated multimodal gradient profiles demonstrated that sensory-
functional axes jointly guide hierarchical patterns of cortical micro-
structure, structure, and function. Our work presents a converging
overarching principle, extending prior work that has focused on spe-
cific modalities in isolation’**’2, These findings suggested a con-
vergence of organizational principles across different scales and at the
level of structure and function. Notably, and in addition to harnessing a

multimodal imaging approach, we leveraged a recently disseminated
atlas derived from post-mortem histological data to finely partition the
brain into distinct areas based on cytoarchitecture, a presumed gold
standard for cortical mapping. Our work, thereby, integrated
dimensional gradient and area-based descriptions of macroscale cor-
tical spatial patterns, providing a unified framework for understanding
the cortical layout. This framework could identify key principles of
between- and within-parcel heterogeneity, distinguish different zones
across the cortical hierarchy, and reveal associations between these
heterogeneity patterns and cross-task diversity. Given that the gra-
dient profiles in our study represent vectors in a multidimensional
space, we then measured the distance between all cortical areas using a
cosine distance metric. As expected, we observed an overarching
pattern of inter-areal dissimilarity, with one end featuring sensory and
motor cortices that had the highest dissimilarity and the other end
encompassing heteromodal and paralimbic areas in the transmodal
apex. This suggests that functional specialization in primary sensor-
imotor areas is accompanied by a more distinctive organization pat-
tern. Reliability analyzes indicated that this inter-areal pattern was not
influenced by potential methodological biases, including the B1+ field
map, SNR of diffusion data, or CNR of T1 data. While tSNR was corre-
lated with inter-areal dissimilarity, the correlation between inter-areal
dissimilarity and cross-task diversity remained significant even after
controlling for tSNR. Overall, the axis of inter-areal dissimilarity is
consistent with the gradients previously reported for single modalities
that are, especially at the level of function and microstructure, also
anchored in primary systems on the one end, and heteromodal and
paralimbic regions on the other end”**. Tract-tracing and neuroima-
ging experiments have documented that primary sensory and motor
cortices host more short-range cortico-cortical connections than
transmodal systems®®, and these regions also tend to have a higher
coupling between microstructure and function, and between struc-
tural connectivity and function”. Such findings are potentially in
support of their more specialized functional profiles®®”, Notably, the
pattern of cortical organization within the limbic system closely aligns
with that of other cortical areas, extending previous findings derived
from single modalities*>**’>”>, For instance, the paralimbic system with
more long-distance connections was reported to have higher micro-
structural similarity®®. Similarly, another study combining structural
and functional connections revealed that less diverse unimodal
regions show a preference for local communication, while more
diverse multimodal regions engage in more global communication
patterns’. Indeed, the degree of laminar differentiation also varies
gradually across the cortex, reflecting the specialization of underlying
cortical microcircuits”’. It is highest in primary areas, such as the
visual and somatosensory cortices, and then decreases in unimodal
and heteromodal regions, to reach its lowest level in agranular areas”””.
Projection patterns similarly follow this gradient’®*°, Together, these
organizational patterns, spanning from the microscale to the macro-
scale, may support the integrative role of the limbic system, enabling it
to participate in various cognitive processes®. However, it is important
to note that no significant associations were observed between PC®
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and either inter-areal dissimilarity or cross-task functional diversity,
suggesting a more complex relationship between cortical hetero-
geneity, functional diversity, and different indices of macroscale
functional integration.

Distance-dependence theory suggests that proximal regions are
more likely to be inter-connected®>®. In addition, those areas sharing
similar microstructural and neurobiological characteristics are also
more likely to be interconnected than regions with distinct
features’***®, These findings support the overarching idea that adja-
cent regions with short-range connections often share gene expres-
sion and microstructural similarities, contributing to their specialized
functional roles. Conversely, while nearby neurons are expected to
share similar microstructural properties when extending smooth
macroscale topography to the microscale®, prior electrophysiological
experiments in various mammalian brain regions have shown that
nearby neurons can exhibit disparate response properties® °°. By
examining intra-areal dissimilarity in gradient motifs in the current
study, we furthermore probed intra-regional consistency vs hetero-
geneity in neural organization. Overall, intra-areal gradient profile
divergence was relatively low compared to inter-areal divergences,
confirming the utility of areal parcellations to meaningfully subdivide
the cortex more generally**®.. Notably, although there was no clear
difference in intra-areal dissimilarity between networks, we observed a
trend towards increased dissimilarity within the unimodal and het-
eromodal cortices. We speculate that this may be related to their more
integrative functional role and increased functional flexibility com-
pared to primary sensory and motor areas, which deserves further
verification in future work. Meanwhile, the potential effects of region
size should also be considered, as larger regions are more likely to
exhibit higher intra-region dissimilarity. Moreover, and in contrast to
the inter-areal findings, we did not observe noteworthy associations
between intra-areal variations and functional and microstructural
indices of the cortical hierarchy. We speculate that intra-regional het-
erogeneity can support the processing and integration of inputs across
agiven cortical territory’®. That is, for disparate types of information to
be integrated, they must at minimum be present in the same brain
regions. Moreover, these findings are aligned with the tethering
hypothesis of cortical patterning, where a disproportionate enlarge-
ment of uni- and heteromodal systems during human evolution and
the progressive decrease of genetically mediated signaling gradients
may have contributed to their higher intra-areal dissimilarity and
relative structure-function decoupling®®®%

There is growing evidence for flexibility in the functional orga-
nization of the cortex, even within a relatively fixed structural and
cytoarchitectural layout®***, For instance, recent studies found that
functional activation and connectivity change in certain areas in the
same individual across different tasks****®>, Another study found that
graph theory measures such as clustering coefficient and nodal
degree can change significantly when comparing the same subjects
across different task conditions®. To explore this further, we inves-
tigated the inter and intra-areal functional diversity across different
fMRI tasks in the same participants. Multiple patterns of inter-areal
functional diversity were found in association cortices, consistent
with prior studies®, where cortical regions specialized for the same
functions were strongly coupled. However, high diversity was found
in functionally flexible regions that participated in multiple functions,
supporting their role in integrating specialized brain networks®’. We
also found a negative correlation between cross-task functional
diversity and inter-areal dissimilarity, suggesting that globally more
specialized regions, such as sensorimotor and visual cortices, exhibit
more stable functional connectivity patterns across tasks. A recent
study reported that functional connectivity in somatomotor cortex
increased with age during childhood through adolescence, whereas it
declined in association cortices, reinforcing the differentiation of

sensorimotor and association systems in typical development®.
These findings support the existence of a sensorimotor-association
axis of cortical organization®”, and may explain higher stability of
functional connectivity in sensorimotor cortex across tasks. For intra-
areal cross-task diversity, we identified a specific axis, indicating
relatively stable patterns in primary sensory and paralimbic cortices.
Interestingly, paralimbic areas exhibited the least intra-areal dissim-
ilarity compared to other cortical regions, showing higher inter-areal
diversity but lower intra-areal diversity in functional connectivity
across tasks. This may be due to the involvement of these regions in a
wide range of cognitive and affective processes®®. Prior findings
suggest that paralimbic cortices with a simple laminar structure are
well suited to integrate a neural “workspace” for a unified conscious
experience due to their position in cortical hierarchies and their
connectivity’. We inferred that the low intra-areal diversity in para-
limbic cortices across tasks is due to their relatively simple local
connectivity structure. However, the interaction patterns between
the paralimbic cortices and other brain regions are dynamic, adapting
to integrate different sensory inputs and meet various cognitive
demands when performing different tasks’**’. Collectively, these
findings suggest that the heterogeneity in global and local cortical
motifs across different regions is reflected in their diverse participa-
tion across different functional contexts. A series of robustness ana-
lyzes, exploring the influence of thresholds for gradient estimation
and the number of gradients, yielded similar results, suggesting that
our analyzes was not affected by variations in specific analysis para-
meters. Moreover, we observed consistent findings at the level of
individual participants and could replicate our findings using an
independent dataset of healthy participants scanned at 3 T. Never-
theless, future studies could explore additional sources of variability,
both between participants and within the same participant over time,
which may arise from individual differences and temporal factors®. In
this study, we focus on structure-function relationships within areas
with similar cytoarchitecture and how these relationships differ
between areas. Using the Julich-Brain atlas offers significant benefits
because it is based on ground-truth cytoarchitecture. However, a
potential limitation is its lack of coverage of the entire cortex. This
limitation is anticipated to be addressed with the future publication
of the whole-brain probabilistic map, currently under development®.
To mitigate this issue in the current work, we replicated our main
analyzes using the Glasser atlas and found consistent results. As our
work shows, cortical parcellation and gradient descriptions provide
synergistic information to understand human brain organization. By
thus reconciling local and global cortical patterns, our work provides
insights into the neuroanatomical basis of specialized and integrative
cortical functions.

Methods

Participants

Our study was based on three independent human neuroimaging
datasets. A 7T dataset (MICA-PNI, 10 subjects, multiple time points)
was for the main analysis and cross-subject reliability assessment. A7 T
dataset (MICA-7T, 12 subjects, one time point) was used for replication
analysis. A 3 T dataset (MICA-MICs, 100 subjects, one time point) was
used for replication. Sex was determined through self-reporting by
participants and was considered in the study design. To minimize
potential biases, we aimed to collect an equal amount of data from
both male and female participants.

MICA-PNI. For our main analysis, we investigated the imaging and
phenotypic data of 10 unrelated healthy adults (age: 29.20 + 5.20 years,
5 females). Each participant underwent three sessions on separate
days. Data were collected between March 2022 and June 2023. This
dataset is openly available at the OSF platform (https://osf.io/mhq3f/).
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MICA-7T. This dataset consisted of 12 unrelated healthy young adults
(age: 29.75 +4.75 years, 7 females). Data were collected between May
2023 and May 2024.

MICA-MICs®. This dataset consisted of 100 unrelated healthy young
adults (age: 34.33+4.07 years, 47 females). Data were collected
between April 2018 and February 2021. A subset of 50 participants is
openly available (https://portal.conp.ca/dataset?id=projects/mica-
mics)®.

The studies were approved by the Ethics Committees of McGill
University and the Montreal Neurological Institute and Hospital,
respectively, and written and informed consent were obtained from all
participants. In addition, participants were compensated financially for
each MRI scanning session attended as reimbursement for their time
and participation.

MRI acquisition

MICA-PNI. MP2RAGE is acquires two 3D images with different inversion
times (TI) to generate a myelin-sensitive map of the T1 relaxation times
and a synthetic Tl-weighted (T1w) image. The 3D MP2RAGE sequence
parameters are the following: 0.5mm isovoxels, matrix =320 x 320,
320 sagittal slices, repetition time (TR)=5170ms, echo time (TE)=
2.44 ms, TI=900 ms, flip angle =4°, iPAT =3, TI1 =1000 ms, TI2=3200
ms, bandwidth = 210 Hz/px, echo spacing =7.8 ms, and partial Fourier =
6/8. Scans were visually inspected to ensure minimal head motion, and
repeated if necessary. Both inversion images were combined for T1
mapping and to minimize sensitivity to Bl inhomogeneities™"®,

DWI data was acquired using a multiband accelerated 2D spin-
echo echo-planar imaging sequence. The acquisition included three
shells with b-values of 300, 700, and 2000 s/mm?2, and 10, 40, and 90
diffusion weighting directions per shell, respectively. The parameters
used were: 1.1 mm isotropic voxels, TR=7383 ms, TE=70.60 ms, flip
angle =90°, refocusing flip angle=180°, FOV =224 x 224 mn?, slice
thickness = 1.1 mm, multi-band factor = 2. Reverse phase encoding b0
images were obtained for distortion correction of the DWI scans.

All multi-echo fMRI were acquired with a 2D blood oxygenation
level dependent (BOLD) echo-planar imaging sequence. The para-
meters were as follows: 1.9 mm isotropic voxels, TR=1690 ms,
TE1I=10.8ms, TE2=273ms, TE3=43.8ms, flip angle=67°,
FOV =224 x 224 mm?, slice thickness =1.9 mm, multiband factor=3,
and echo spacing = 0.53 ms. During the 6-min rs-fMRI scan, partici-
pants were instructed to keep their eyes open, fixate on a cross
presented on the screen, and not think of anything. Two spin-echo
images with opposite phase encoding directions were also
acquired for distortion correction of the rs-fMRI scans, with the
following parameters: phase encoding=AP/PA, 1.9 mm isovoxels,
FOV=224x224mm? slice thickness=1.9mm, TR=3000ms,
TE= 184 ms, flip angle=90°. Based on a validated open-source
protocol™, we collected multiple task fMRI scans, including episodic
encoding/retrieval and semantic tasks, as well as the MST, which
both lasted ~6 min. During the episodic memory encoding, partici-
pants memorized paired images of objects. In the retrieval phase,
participants were shown an image and asked to identify the paired
object from three options. Semantic memory retrieval involved
identifying the object that is most conceptually related to a target
image from three options. In all memory tasks, there were 56 trials,
and the difficulty was modulated based on semantic relatedness
scores'’>. During the MST, participants determined whether the
object in images was indoor or outdoor, and then identified whether
the object shown in images was old, similar, or new. We also col-
lected fMRI data while participants watched movies, tracking
hemodynamic activity during naturalistic viewing conditions'”. A
detailed imaging protocol is provided in the data release (https://osf.
io/mhq3f/), including the complete list of acquisition parameters.

MICA-MICs. Two Tlw scans with identical parameters were acquired
with a 3D magnetization-prepared rapid gradient echo sequence
(0.8 mm isovoxels, matrix =320 x 320, 224 sagittal slices, TR=2300
ms, TE=3.14ms, TI=900 ms, flip angle=9°, iPAT =2). Scans were
visually examined to ensure minimal head motion, and repeated if
necessary.

qT1 relaxometry data was acquired using a 3D-MP2RAGE
sequence (0.8 mm isovoxels, 240 sagittal slices, TR =5000 ms, TE =
2.9ms, TI1=940 ms, T1 2=2830ms, flip angle =4°, flip angle 2=5°,
iPAT =3, bandwidth =270 Hz/px, echo spacing =7.2 ms, partial Four-
ier = 6/8). Both inversion images were combined for qT1 mapping to
minimize sensitivity to Bl inhomogeneities and optimize intra- and
inter-subject reliability®*'°,

DWI data was acquired using a 2D spin-echo echo-planar imaging
sequence, consisting of three shells with b-values =300, 700, and
2000 s/mm?, and with 10, 40, and 90 diffusion weighting directions
per shell, respectively (1.6 mm isovoxels, TR =3500 ms, TE = 64.40 ms,
flip angle=90°, refocusing flip angle=180°, FOV =224 x 224 mm?,
slice thickness =1.6 mm, multi-band factor=3, echo spacing=0.76
ms). bO images acquired in reverse phase encoding direction were
used for distortion correction of DWI scans.

A 7-min rs-fMRI scan was acquired using multiband accelerated
2D-BOLD echo-planar imaging (3 mm isovoxels, TR=600ms,
TE=30 ms, flip angle=52°, FOV =240 x 240 mm?, slice thickness=
3 mm, mb factor=6, echo spacing=0.54ms). Participants were
instructed to keep their eyes open, not fall asleep, and look at a fixation
cross. Two spin-echo images with reverse phase encoding were also
included for distortion correction of the rs-fMRI scans (phase encod-
ing=AP/PA, 3 mm isovoxels, TR=4029 ms, TE=48ms, flip angle=
90°, FOV=240x 240 mm?, slice thickness=3 mm, echo spacing=
0.54 ms, bandwidth = 2084 Hz/Px).

Multimodal MRI processing

MICA-PNI. The MP2RAGE scans of each subject were reoriented using
FSL'*, linearly co-registered, averaged, with background noise
removed, corrected for intensity nonuniformity using N4 bias field
correction from ANTS'®®, and segmented into white and gray matter
using FSL FAST'*. Resulting volumes were skull stripped using
FSL'°1%_ Cortical surface models were generated from native Tlw
scans using FastSurfer'”. Surface reconstructions for each subject
underwent manual correction for segmentation errors, by placing
control points and applying manual edits. The B1+ field map and the
CNR of the T1 map were calculated for each participant to assess
reliability.

Regarding the DWI data, pre-processing was carried out using
MRtrix'® in the native DWI space. The DWI data underwent
denoising'*°, b0 intensity normalization, and correction for sus-
ceptibility distortion, head motion, and eddy currents. These correc-
tions were performed using FSL™ and involved utilizing two b=0's/
mm? volumes with reverse phase encoding. Anatomical masks for
tractography were non-linearly co-registered to native DWI space
using the deformable SyN approach implemented in ANTs"2. We
computed the mean and standard deviation maps of the bO images.
For each participant, voxel-wise SNR maps were generated by dividing
the mean map by the standard deviation map. These SNR maps were
subsequently projected onto the fsLR-5k surface.

For the rs-fMRI scans, pre-processing steps were conducted using
AFNI'® and FSL'"* tools. The first five volumes were discarded to ensure
magnetic field saturation. We applied Multi-Echo Independent Com-
ponents Analysis™*'" to improve the signal-to-noise ratio and effect of
motion correction. Spike regression was applied to remove timepoints
with large motion spikes, effectively removing nuisance signals"®'”.
The volume time series were registered to FastSurfer'”” space using
boundary-based registration implemented in ANTs using linear and
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non-linear methods"®

participant.

. The tSNR maps were estimated for each

MICA-MICs. The surface reconstructions for each subject underwent
manual inspection and correction for segmentation errors by placing
control points and applying manual edits. The qT1 scans were linearly
co-registered to the corresponding subject’s TIw scan.

Regarding the DWI data, pre-processing was carried out
using MRtrix'*® in the native DWI space. The DWI data underwent
denoising'®'°, b0 intensity normalization, and correction for
susceptibility distortion, head motion, and eddy currents. These
corrections were performed using FSL and involved utilizing two
b=0s/mm? volumes with reverse phase encoding. Anatomical
masks for tractography were non-linearly co-registered to native
DWI space using the deformable SyN approach implemented in
ANTs™2,

For the rs-fMRI scans, pre-processing steps were conducted using
AFNI"2 and FSL'* tools. The first five volumes were discarded to ensure
magnetic field saturation. The remaining volumes underwent reor-
ientation, motion correction, and distortion correction. We applied
FMRIB’s ICA-based X-noiseifier™ and spike regression to remove
timepoints with large motion spikes, effectively removing nuisance
signals"®'", The volume time series were registered to FastSurfer'”’
space using boundary-based registration implemented in ANTs using

linear and non-linear methods".

Generating multimodal connectome matrices

To investigate the vertex-wise multimodal connectomes, we first
constructed a downsampled fsLR-5k surface using HCP’s workbench
tools (wb_command)'®. The fsLR-32k surface templates and resam-
pling spheres between “fsaverage” and “fs_LR” were accessed from the
HCP’s open-access pipeline’”. Subsequently, we downsampled the
surface template, registration spheres, and mid-wall mask to 5k,
resulting in a mesh comprising 4432 cortical vertices for each hemi-
sphere. All vertex-wise analyzes were performed based on this fsLR-5k
surface.

We calculated vertex-wise MPC matrices for each participant.
Consistent with previous work??>'*, we constructed 14 equivolu-
metric surfaces between the pial and white matter boundaries to
sample qT1 intensities across cortical depths. This procedure gener-
ated distinct intensity profiles reflecting intracortical microstructural
composition at each cortical vertex. Data sampled from surfaces clo-
sest to the pial and white matter boundaries were removed to mitigate
partial volume effects. Intensity values at each depth were mapped to a
common template surface, resampled to fsLR-5k surface, and spatially
smoothed across each surface independently (full width at half max-
imum [FWHM]=3mm). Vertex-wise intensity profiles were cross-
correlated using partial correlations controlling for the average cortex-
wide intensity profile and log-transformed. This procedure resulted in
the MPC matrices representing participant-specific similarity in myelin
proxies across the cortex.

To generate each individual's SC, we employed MRtrix on pre-
processed DWI data'®. Each surface vertex from the fsLR-5k surface
was translated into a volumetric region of interest that filled the cor-
tical ribbon using workbench tools'. This process yielded ~10 k seeds/
targets for structural connectome generation. Anatomical segmenta-
tions and volumetric seeds were then mapped to DWI space, applying
the non-linear registration warp-field mentioned earlier. Next, we
estimated multi-shell and multi-tissue response functions® and per-
formed constrained spherical deconvolution to derive a fiber orien-
tation distribution map'>"?, This procedure, achieved through MRtrix,
generated a tractogram with 40 M streamlines, with a maximum tract
length of 250 mm and a fractional anisotropy cutoff of 0.06. To
reconstruct whole-brain streamlines weighted by cross-sectional
multipliers'”’, we applied spherical deconvolution informed filtering

of tractograms (SIFT2). Connection weights between seeds/targets
were defined as the streamline count after SIFT2.

Next, individual rs-fMRI timeseries mapped to subject-specific
surface models were resampled to fsLR-5k surface. Surface-based rf-
MRI data underwent spatial smoothing with a Gaussian kernel
(FWHM =3 mm). An individual's FC matrix was generated by cross-
correlating all vertex-wise timeseries. Correlation values subsequently
underwent Fisher-R-to-Z transformations. FC matrices of all task fMRI
scans were also generated using the same approach.

Construction of gradient profiles

We converted each participant’s SC, MPC, and FC matrices to a nor-
malized angle affinity matrix, respectively, and applied diffusion map
embedding on these matrices to generate multimodal gradients'”.
This non-linear dimensionality reduction procedure identified eigen-
vectors that describe main spatial axes of variance. Procrustes analysis
aligned subject-level gradients to a group-level template generated
from the group-average matrix of all participants. Gradients of the
right hemisphere were aligned to the left hemisphere. Gradient ana-
lyzes were performed using BrainSpace (v0.1.10; http://github.com/
MICA-MNI/BrainSpace), limiting the number of gradients to 10 and
using default sparsity (keeping the top 10% of SC weights) and diffu-
sion (&= 0.5) parameters'”. Here, we focused on the first five principal
gradients of each modality (Fig. 1A). For each modality, all gradients
were normalized by dividing by the maximum value in the absolute
value of gradients, with values ranging from -1.0 to 1.0.

The Julich-Brain is a 3D probabilistic atlas of the human brain’s
cytoarchitecture, resulting from the analysis of 10 post-mortem human
brains (Fig. 1B). The probabilistic cytoarchitectonic maps (Julich-
Brain v2.9, https://julich-brain-atlas.de/) were projected onto a tem-
plate fsLR-5k surface to generate a surface-based representation®.
Surface-based probabilistic maps contained values indicating the
probability of an area being localized in each voxel, ranging from 0% to
100% overlap, with values ranging from O to 1. We registered the
probabilistic maps to the fsLR-5k surface template. For each vertex, we
defined its area label by identifying the area with the highest prob-
ability at that position. This area label was then used to assign all
vertices on the fsLR-5k surface to the 228 areas defined by the
Julich-Brain.

Gradient profile analyzes

Inter-areal heterogeneity and homogeneity assessment. Under-
standing the relationships between diverse brain regions, including
their similarities and differences, is essential for investigating the
spatial patterns of brain organization. In this study, we focus on
exploring inter-areal heterogeneity and homogeneity to further reveal
the global layout of cortical area. To quantify inter-areal heterogeneity,
we computed the inter-areal dissimilarity for each area. Specifically, we
calculated the cosine distance between gradient profiles of each area,
resulting in a cosine distance matrix (Fig. 2A). The inter-areal dissim-
ilarity was defined as the mean of each row in the cosine distance
matrix, representing the distance between an area and all other areas.
To identify cortical regions with significantly higher or lower inter-
areal dissimilarity, we projected the inter-areal dissimilarity map onto a
sphere and conducted 1000 spin permutation tests. An area was
considered to have the highest inter-areal dissimilarity among the
cortex if its original inter-areal dissimilarity value exceeded 97.5% of
the permutation values. Conversely, an area was regarded as having
the lowest inter-areal dissimilarity if its original value was lower than
97.5% of the permutation values. To correct for multiple comparisons,
we applied the FDR correction. To further investigate patterns of inter-
areal dissimilarity, we conducted a network-level analysis utilizing the
scheme proposed by Mesulam®, which delineates four cortical func-
tional zones (i.e., idiotypic, paralimbic, unimodal, heteromodal; see
Fig. 2B). Inter-areal dissimilarity between each pair of cortical
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hierarchies was compared using a two-sample t-test. FDR corrections
were applied to correct for multiple comparisons, while spatial auto-
correlation spin permutation tests were conducted for all tests. In
order to explore the associations between inter-areal dissimilarity and
cortical microstructural hierarchy, we generated a MPC matrix based
on histological data from BigBrain®, an ultrahigh-resolution 3D human
brain model. From this matrix, we estimated the principal histological
gradient as a representation of microstructural hierarchy. To examine
the associations between the histological gradient and inter-areal dis-
similarity, we calculated Spearman’s correlation coefficient, with
p-values corrected using 1000 spin permutation tests. To investigate
the relationship between inter-areal dissimilarity and functional inte-
gration patterns, we calculated the PC® using four cortical hierarchical
levels®* as communities. Additionally, we estimated global FC strength
by averaging the FC values for each region.

Differences between cortical regions are crucial to functional
specialization, but at the same time, similarities between regions
support the realization of higher-order cognitive functions and func-
tional integration across brain regions. To assess the homogeneity of
cortical areas, we calculated (1-cosine distance) to represent the simi-
larity between regional gradient profiles, resulting in an affinity matrix
(Supplementary Fig. 1A). To evaluate the association between inter-
areal similarity and cortical hierarchy, we examined the distribution of
similarity coefficients across four hierarchy levels. To identify cortical
areas with higher similarity, we performed hierarchical clustering on
the affinity matrix to detect groups among the areas. We evaluated the
clustering performance by calculating criterion values to determine
the optimal number of clusters. We scrutinized the clusters with the
highest criterion value and assessed the distribution of cortical hier-
archies within each cluster to investigate the association between
inter-areal homogeneity and cortical laminar differentiation.

Intra-areal homogeneity and heterogeneity assessment. Functional
segregation of distinct regions is a critical principle of the human brain.
Itis thus important to investigate the local organization, i.e., the layout
within an area to provide insights into the wiring principle of the
cortex. Given that each area was originally defined based on shared
neuroanatomical features, we expect to find overall high intra-areal
homogeneity. Here we quantified, however, to what extent the level of
homogeneity varies across the brain. We assessed inter-areal dissim-
ilarity at both the region-level and network-level. As previously
described, we calculated the gradient profiles for each area by aver-
aging the vertex-wise gradients within that area. For a given area i, we
calculated the cosine distance between the vertex-wise multimodal
gradients and gradient profile of area i, resulting in the generation of
intra-areal dissimilarity of area i (Fig. 2C). This procedure was repeated
for all areas, yielding the vertex-wise intra-areal dissimilarity map.

To visualize the patterns of intra-areal heterogeneity more effec-
tively, we calculated the average vertex-wise intra-areal dissimilarity
within each area. By controlling for the number of vertices within each
area, we accounted for the effect of area size. Furthermore, we inves-
tigated the intra-areal dissimilarity at the network-level using the four
cortical hierarchies proposed in a previous study®*. We examined the
distribution of intra-areal dissimilarity within these four cortical hier-
archies and compared the differences between each hierarchy using a
two-sample t-test with FDR correction and spatial autocorrelation spin
permutation tests. To investigate associations between intra-areal
dissimilarity and cortical microstructural hierarchy, we calculated
Spearman’s correlation coefficient between the histological gradient
and intra-areal dissimilarity, correcting the p value using 1000 spin
permutation tests.

Associations to cross-task functional diversity. To explore patterns
of functional diversity across tasks, we constructed vertex-wise FC
matrices by cross-correlating timeseries data derived from multiple

task fMRI sessions. The cosine distance between each vertex from
different tasks was then computed, resulting in a cross-task diversity
matrix (Fig. 3A). To quantify the cross-task diversity for a specific task,
we averaged all distance values between that task and others. This
process was repeated for all tasks, and the outcomes were mapped to
areas, generating area-wise cross-task diversity for each task. Focusing
on overall diversity, we calculated the average of values across all tasks
to create the cross-task diversity map (Fig. 3B). To investigate asso-
ciations between cross-task diversity and inter-/intra-areal dissim-
ilarity, we computed Spearman'’s correlation coefficient. The resulting
p values were corrected for spatial autocorrelations using 1000 spin
permutation tests.

To further investigate how intra-areal FC patterns change with
tasks, we estimated the intra-areal cross-task diversity. For each area,
we calculated the mean of FC strength between each vertex v to other
vertices within a. We repeated this process for all tasks ¢ and estimated
the standard deviation across tasks (Fig. 3C). We summed all vertex-
wise standard deviation values within the area and divided it by the
number of vertices in this area to control for the effect of parcel size.
We examined the correlation between intra- and inter-areal cross-task
diversity by computing Spearman’s correlation coefficient, controlling
tSNR as a covariate, and controlling for the spatial autocorrelation
using 1000 spin permutation tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The MRI data of the 7 T discovery dataset is openly available at the OSF
platform (https://osf.io/mhq3f/)*®. The Julich-Brain atlas is available at
the EBRAINS platform (https://www.ebrains.eu/tools/human-brain-
atlas). The MICA-MICs replication data is openly available at https://
portal.conp.ca/dataset?id=projects/mica-mics ®. Source data are pro-
vided with this paper.

Code availability

Gradient mapping analyzes was based on BrainSpace (https://
brainspace.readthedocs.io/en/latest/)'””. Code for MRI data pre-
processing is available at https:/github.com/MICA-MNI/micapipe ™.
The code for connectome gradients generation is available at https://
github.com/MICA-MNI/BrainSpace. The Code for generating gradients
used in this study, along with the main analysis is openly available on
https://github.com/MICA-MNI/Wang_MultimodalGradient.
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