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We report on the current state of factoring integers on both digital and analog quantum comput-
ers. For digital quantum computers, we study the effect of errors for which one can formally
prove that Shor’s factoring algorithm fails. For analog quantum computers, we experimentally
test three factorisation methods and provide evidence for a scaling performance that is abso-
lutely and asymptotically better than random guessing but still exponential. We conclude with
an overview of future perspectives on factoring large integers on quantum computers.

1 Introduction

The integer factorisation problem (IFP) is one of the oldest and most fascinating prob-
lems in mathematics1, 2. It is defined as the problem of finding a non-trivial divisor of a
composite integer N . Besides its historical significance, the IFP is of central importance
to everyday data and communication security, in the sense that the security of common
encryption systems and protocols in use is based on the difficulty of solving the IFP for
large integers. The latest record is the factorisation of the 829-bit number RSA-250 from
the RSA factoring challenge3, involving a 32M-hour allocation on the JUWELS super-
computer. The best-known algorithms3–5 to solve the IFP on conventional computers scale
(sub)exponentially in the number of bits of the integer N . For this reason, cryptosystems
like RSA6—currently using integers N with 1024, 2048, or 4096 bits—are still secure.

Quantum computers (QCs) are an emerging technology that promise a breakthrough
in the solution of the IFP. We distinguish between digital and analog QCs. On an ideal
digital QC, Shor’s algorithm7–9 can solve the IFP with time and space complexity that is
polynomial—not exponential—in the number of bits of N . However, so far only very
small integers N ≤ 35 have been successfully factored10–13 with Shor’s algorithm on
a digital QCa. By executing Shor’s algorithm on a QC simulator using 2048 GPUs of
JUWELS Booster, the largest integer that could be factored is the 39-bit number N =
549 755 813 701 = 712 321× 771 78115 (see Table 3 in Ref. 16 for an overview).

aNote that there exist many claims of factoring larger integers on digital QCs, but the underlying experiments
often rely on a certain kind of oversimplification14 that makes them equivalent to coin flipping. Even for
N = 15, 21, 35, one can argue that the explicitly compiled quantum circuits might not have been found without
previous knowledge about the answer to the IFP.
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For analog QCs, several alternative approaches to solving the IFP exist17–26. Analog
QCs hold the current record of the largest non-trivial integer factorisation by QC hardware,
namely the 23-bit integer N = 8219 999 = 251 × 32 749 factorised by a D-Wave quan-
tum annealer26. Although a polynomial scaling of factorisation by analog QCs has been
suggested numerically17, an exponential scaling is considered more likely. In this article,
we show experimental evidence for the latter.

This article is structured as follows. Section 2 focuses on solving the IFP with digital
QCs. We review the main ideas of Shor’s algorithm, its large-scale simulation on JUWELS,
and future perspectives of factoring on digital QCs. Section 3 discusses three methods of
factoring on analog QCs. In this section, we also present results of implementing these
methods on quantum annealers. Section 4 contains our conclusions.

2 Digital Quantum Computers

A digital QC—also known as a gate-based or universal QC27—is a machine consisting of
individually controllable quantum bits (qubits). A qubit is defined as a superposition of the
classical-bit states “0” and “1” and is commonly written as α|0⟩ + β|1⟩ with α, β ∈ C.
Crucially, when a qubit is measured at the end of a computation, one always obtains one of
the two classical-bit states, namely either “0” with probability |α|2 or “1” with probability
|β|2. Hence, every QC is a probabilistic machine. In a digital QC, each individual qubit
(and certain combinations of multiple qubits) are individually operable, and these oper-
ations are called quantum gates. A digital QC is called universal, because in principle,
each program for conventional computers can be mapped to a combination of quantum
gates with only polynomial overhead (note that this does not imply that everything will run
faster on a QC—currently, only a few algorithms with a proven speedup are known).

The current three most promising technologies for digital quantum processing units
(QPUs) are superconducting circuits, neutral atoms, and trapped ions. With superconduct-
ing circuits, IBM has manufactured a 1121-qubit QPU28, and Google has demonstrated
quantum error correction below the surface code threshold on a 105-qubit QPU29. With
neutral atoms, QuEra has built a logical QPU with 280 physical qubits30. Finally, trapped
ion QPUs produced by Quantinuum have achieved the best gate performance and an all-
to-all connectivity31, 32. Pioneering European companies producing digital QPUs are IQM
focusing on superconducting circuits33 and eleQtron focusing on trapped ions34, both of
which are being installed for provision at JSC. However, it is important to realise that all
existing digital QPUs are still noisy prototypes, meaning that they can usually not compete
with conventional (super)computers for most application problems.

2.1 Shor’s Factoring Algorithm

Peter Shor proposed an algorithm to solve the IFP with an exponential speedup on an ideal
digital QC in 19947, 9, a result which arguably sparked most of the community’s interest
to build a digital QC until the present moment. To explain Shor’s factoring algorithm, we
consider the factorisation of a semiprime N = p× q, i.e., a composite integer N with two
unknown, non-trivial prime factors p, q > 2. The algorithm consists of four steps that are
schematically shown in Fig. 1:
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Figure 1. Schematic of performing Shor’s factoring algorithm. First, one selects an L-bit semiprime N to factor
and a random a (blue). Then, one executes the quantum gates of Shor’s algorithm (red), using either a working
digital QC or a large-scale simulation on multiple GPUs with shorgpu35, which yields a bitstring j0j1 · · · jt−1

(green). Note that the iterative quantum circuit needs L+1 qubits to simulate an L-bit factoring scenario. Finally,
the integer j corresponding to the bitstring is post-processed, which yields with high probability a factor of the
semiprime N (yellow). Further details are given in Ref. 15.

1. Parameter Selection (blue): Choose a random integer a with 2 ≤ a < N and greatest
common divisor gcd(a,N) = 1.b

2. Quantum Algorithm (red + green): Execute the quantum gates of Shor’s algorithm
on a digital QC. The result of the QC are t bits j0j1 · · · jt−1, which make up the binary
representation of an integer j. The number of bits t is usually twice as large as the
number of bits in N . Note that, in principle, the green “simulation” part in Fig. 1 can
be completely replaced by a real digital QC once available and working.

3. Classical Post-Processing (yellow): Find the largest denominator r < N such that
j/2t ≈ k/r using a continued fraction expansionc.

4. Factor Extraction (yellow): Compute gcd(a⌊r/2⌋ ± 1, N)d which will—with suffi-
ciently high probability—yield one of the factors p or q.

The proof why the algorithm works is beyond the scope of this article. However, it is
important to understand that there is a certain probability that Shor’s algorithm fails (even

bNote that if the greatest common divisor is not 1, it would have to be either p or q, and the problem would have
been solved by accident—which is very unlikely for large N . The greatest common divisor can be computed
efficiently with the Euclidean algorithm.
cThe continued fraction expansion is a systematic method that yields successive approximations
k0/r0, k1/r1, . . . with increasing denominators r0 < r1 < · · · to an arbitrary real number (cf. e.g. Ref. 8).
dWe note that this expression can be computed efficiently classically, because gcd(y,N) = gcd(ymodN,N)
for all y and the modular exponentiation ax modN can be computed with the square-and-multiply algorithm.
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Figure 2. Success probability of factoring on digital QCs as a function of the error magnitude δ for a, 20 qubits
factoring 19-bit semiprimes, and b, 30 qubits factoring 29-bit semiprimes. Markers denote the mean success
probability over a 500 and b 1000 simulated factoring problems for each δ in four different cases: (i) Shor
(green pentagons) corresponds to Shor’s original factoring procedure7, 9, (ii) Shor+Lucky (yellow squares)
includes the unexpected lucky cases, in which the factorisation works in practise even though the theoretical
requirements15 are not met, (iii) Ekerå (red stars) denotes the success probability when using the best-known
classically efficient post-proccessing procedures42, 43 on the measured bitstrings, (iv) Peak (blue circles) indi-
cates only the probability to observe a peak in Shor’s bitstring-output distribution15 that is the actual theoretical
quantity studied in Cai’s proof44. At δ = 0, the success probabilities are between 25–100%, in agreement with
Ref. 15 for the no-error scenarios. Note the change from linear to logarithmic scale at 0.01% on the vertical
axes. Shaded areas and error bars indicate the unbiased standard error of the mean. Lines are guides to the eye.

on ideal digital QCs, in part also due to the probabilistic nature of the QC model itself, as
is the case for many other standard quantum algorithms27; see Appendix A.2 of Ref. 15 for
more information). This motivates us to perform large-scale simulations of Shor’s factoring
algorithm on JUWELS Booster, to obtain a practical estimate of the success probability—
i.e., what sufficiently high probability in point 4 above means (see also Refs. 36–41 for
related endeavours).

2.2 Large-Scale Simulations

Theoretical estimates of the success probability for Shor’s factoring algorithm (as de-
scribed in Sec. 2.1) are usually very pessimistic and amount to only a few percent15. We
have designed a digital QC simulation35 of Shor’s algorithm (see Fig. 1, green part) to
evaluate the practical performance for over 60 000 factoring problems, with a surprising
result: There are many so-called lucky cases in which the factorisation is successful, even
though Shor’s algorithm is, according to theory, not expected to work. Furthermore, we
have posed the challenge of factoring, on a real QPU, a non-trivial semiprime larger than
the number N = 549 755 813 701 = 712 321×771 781 that we have factored by executing
Shor’s algorithm on a simulated QC.

We remark that the wall-clock time that this simulation takes actually grows only lin-
early with the number of qubits, due to the high degree of parallelism. However, the space
complexity is exponential, as simulating the L+ 1-qubit quantum computer requires at
least 16 × 2L+1 bytes of memory45, 46. Specifically, shorgpu35, as well as universal QC
simulators like JUQCS–G47, require doubling the number of GPUs with every additional
qubit.

A nice benefit of a large-scale QC simulation is that it allows the study of classical
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and quantum errors, which affect any QPU device with various orders of magnitude. Of
particular interest is an error model proposed by Cai in Ref. 44, for which one can formally
prove that Shor’s factoring algorithm fails. This error model is expressed in terms of an
error magnitude parameter δe. Cai’s proof can be seen as formal support for the common
viewpoint that for large-scale factoring on a digital QC to work, quantum error correction27

would be required.
Figure 2 shows results for the success probability as a function of the error magnitude

δ. We see that from 20 to 30 qubits (panels a and b, respectively), the success probability
for Shor’s algorithm (green diamonds) indeed drops towards zero for errors with δ ≥
0.8. Interestingly, however, when including the lucky cases (yellow squares) or efficient
classical post-processingf (red stars), the success probability converges to a non-negligible,
finite value. Even though this finite value might decrease exponentially when increasing the
number of qubits—in agreement with Cai’s proof—it is thus conceivable that the challenge
of limited quantum speedup48 posed in Ref. 15 may be met without the above-mentioned
requirement for quantum error correction.

2.3 Future Perspectives

The quantum circuit in Fig. 1 needs L + 1 qubits to factor an L-bit semiprime. However,
on a digital QPU, the individual quantum gates usually need to be compiled into realisable
one- and two-qubit gates. This is expected to yield quantum circuits with 2L to 2L + 3
qubits49–53 (or 1.5L qubits with a trick54). As these qubits need to perform almost perfectly,
a quantum error correction overhead can raise the required number of physical qubits dra-
matically. For instance, for the factorisation of 2048-bit RSA integers, several millions of
physical qubits are currently anticipated55.

Hence, over the past decades, there have been many algorithmic developments and
alternative ideas to solve the IFP on digital QCs, often preserving the theoretical concept of
an exponential speedup over current algorithms. In particular, the Ekerå-Håstad scheme56

makes use of another algorithm invented by Shor, namely the discrete logarithm quantum
algorithm7, 9. The advantage of this scheme is that it yields a roughly 75% shorter quantum
circuitg. These optimisations, however, do not directly reduce the number of qubits.

Fascinatingly, Chevignard, Fouque, and Schrottenloher managed60 to combine the
Ekerå-Håstad scheme with a hash function technique61 to obtain quantum circuits using be-
tween 0.5L and less than L qubits to factorise L-bit RSA integers (see Table 3 in Ref. 60).
It is exciting to see what further research along these lines can bring.

eThe error parameter δ used here and in Ref. 35 corresponds to the global magnitude parameter ϵ in Ref. 44,
which expresses Gaussian noise on each rotation gate R in the quantum circuit of Shor’s algorithm (see
Refs. 15, 35, and 44 for more information). Specifically, the faulty rotation gate is defined as R̃k =

diag(1, e2πi(1+δr)/2k ) where r is a normally distributed random number.
fThe parameters for Ekerå’s post-processing procedures42, 43 are the same as in Ref. 15, i.e., (B, c, k, ς) =
(L, 1, 100, 1). They are such that the success probability without error (δ = 0) is increased to above 95% to
observe the dependence on δ. Note that for the small numbers being factorised, it would be possible to increase the
post-processing parameters further to achieve success probabilities close to one even in the presence of arbitrarily
large errors.
gThis means that t ≈ 1.5L in Fig. 1 would suffice instead of t ≈ 2L. In this context, it is also worth mentioning
Regev’s multidimensional variants of Shor’s algorithm57–59, which also yield an asymptotically shorter quantum
circuit.
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3 Analog Quantum Computers

Like a digital QC, an analog QC is a machine consisting of individual qubits. However,
in contrast to digital QCs, the qubits in an analog QC are not individually and arbitrarily
controllable. Instead, after programming an analog QC, the qubits typically undergo a
natural evolution for a certain time, and at the end each qubit is measured, yielding a
classical-bit state. Note that this does not mean that analog QCs cannot be universal—in
fact, one can prove a polynomial equivalence62–64 to universal digital QCsh.

Analog QCs are easier to manufacture than digital QCs, mostly due to the more relaxed
requirements on individual qubit control. Therefore, much larger analog QPU systems
have been built to date. D-Wave has manufactured superconducting quantum annealers
with over 5600 qubits, one of which is located in Europe—the JUPSI system hosted at
JSC—and a QPU with over 7000 qubits is in development65. The companies Pasqal and
QuEra build analog QCs based on neutral atoms, with qubit numbers ranging from 19666 to
25667 up to 82868, and the California Institute of Technology reports 6100 coherent atomic
qubits69.

3.1 Factorisation on Quantum Annealers

Quantum annealers are designed to solve optimisation problems. In particular, the D-Wave
Advantage QPU addresses the Quadratic Unconstrained Binary Optimisation (QUBO)
problem, defined as the minimisation min

xi=0,1
E(x0, x1, . . . , xn−1) of the cost function

E(x0, x1, . . . , xn−1) =

n−1∑
i=0

aixi +

n−1∑
i<j

bijxixj . (1)

Here, n is the number of qubits, xi = 0, 1 are the binary problem variables that are repre-
sented by qubits on the QPU, and ai and bij are the real-valued programmable biases and
couplers of the qubits, respectively.

To solve the IFP on quantum annealers, we therefore have to represent the solution
to the IFP as the minimum of Eq. (1). The most common approach is to use the qubits
x0, x1, . . . ∈ {0, 1} to represent the unknown bits of the factors p and q. We express p (q)
using lp (lq) bitsi. Since N is odd—otherwise finding a factor would be trivial—we know
that the least significant bits of p and q are 1. Furthermore, since lp and lq are fixed, we
can set the most significant bits to one. The binary encoding of p and q thus reads

p = 1pl∗ppl∗p−1 · · · p2p11 , (2)
q = 1ql∗qpl∗q−1 · · · q2q11 , (3)

hHowever, this polynomial equivalence cannot be implemented on most currently existing analog QCs due to
technical limitations. For instance, the analog QC would need to support 3-local terms or 6-dimensional quantum
digits62, other so-called non-stoquastic properties (cf. Ref. 63 for a comprehensive review), or successive back-
and-forth annealing64.
iSince lp and lq have to be fixed, one would usually start with lp ≈ lq ≈ L/2 (where L is the bit length of the
semiprime N to factor) and then start decreasing lp and increasing lq until a factor is found. Note that this only
incurs a polynomial overhead.
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Figure 3. Visualisation of two factorisation methods on a D-Wave quantum annealer. a, 3× 3-bit multiplication
table for the MC method. The bits of p and q are connected with Boolean AND, HA, and FA logic gates. Arrows
indicate immediate ancilla qubits representing and (blue), sum (red), and carry (green) bits. b, Embedding of
a 15 × 8-bit multiplier onto the D-Wave Advantage 4.1 QPU. Nodes (edges) represent the 5627 physical qubits
(40277 couplers) on the QPU. Red lines indicate qubits and couplers that exist in the full underlying Pegasus
graph but not on the QPU (by construction or due to fabrication defects). When this multiplier is used for the
factorisation of e.g. N = 3548 021; the bits of the factor 1010101000001112 (101000112) correspond to the
vertically (diagonally) connected unit cells.

where l∗p = lp−2 and l∗q = lq−2 count the number of unknown bits l = l∗p+ l∗q . Given this
encoding, we consider three methods to obtain a QUBO cost function E(x0, x1, . . . , xn−1)
with n qubits (x0, x1, . . . , xn−1) = (p1, . . . , pl∗p , q1, . . . , ql∗q , . . .):

1. Direct Method17, 18, 21: An obvious cost function to minimise is f(p, q) = (N−pq)2,
as its minimum f(p, q) = 0 is attained if and only if N = p × q. However, when
inserting the binary representations in Eqs. (2) and (3) into this cost function, one
obtains higher-than-quadratic terms between the qubits. To solve this problem, one
uses a reduction technique that yields nreduction additional so-called ancilla qubits to
obtain a cost function of the form of Eq. (1)j. We thus need n = l+nreduction qubits.

2. Multiplication Circuit Method19 (MC Method): A complimentary approach is to
write out the binary product 1pl∗ppl∗p−1 · · · p2p11× 1ql∗qpl∗q−1 · · · q2q11 in a long mul-
tiplication table. Between all unknown bits, one can then identify Boolean AND,
half-adder (HA), and full-adder (FA) gates (see Fig. 3a). For each such gate, one can
find a QUBO cost function that attains its minimum if and only if the Boolean logic
gate is satisfied. The sum of all these cost functions then yields the final cost function
Eq. (1). We remark that also this method incurs additional ancilla qubits representing
intermediate “and”, “sum” and “carry” bits such that n = l + nand + nsum + ncarry.

3. Controlled Full-Adder Method26 (CFA Method): Both direct and MC methods need
many couplers bij between the qubits in Eq. (1). However, on the D-Wave Advantage

jIn Ref. 70, the direct method is equal to the Modified Multiplication Table (MMT) method21 in the limit of
maximum block size, where there are no carry variables. For smaller block sizes, the ancilla qubits would consist
of both nreduction qubits from the quadratic reductions and ncarry qubits for carry bits in the multiplication
table. In this article, we only consider the direct method as its performance was found to be superior to MMT
with smaller block sizes70.
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Figure 4. Performance of three factoring methods on analog QCs. a, Observed success frequencies as a function
of the problem size, given by the number of unknown bits l = l∗p+l∗q in the two factors p and q. Markers represent
the median success frequencies and error bars denote the 25% and 75% percentile for the three methods (see
legend). The corresponding lines represent exponential fits ∼ 2bl to the data, with the resulting scaling exponents
b given in the legend. The red line represents the probability 2−l of randomly guessing the unknown bits. b,
Frequency of the global minimum of the QUBO cost function, i.e., the sample in which not only the qubits
representing p and q but also all additional ancilla qubits are correct (note that by construction of the QUBO, the
solution bits representing p and q can be correct even though immediate carry bits are wrong). All results have
been obtained on the D-Wave Advantage QPUs 5.4 (direct method, MC method) and 4.1 (CFA method) with
∼ 10000 samples for each N and about 10 randomly selected semiprimes N for each l.

QPU, one qubit is only coupled to 15 other qubits on average. When more connec-
tions between qubits are required than physically exist on the QPU, one has to perform
a heuristic embedding71 step, by which multiple physical qubits are connected to rep-
resent a single logical problem variable. Such an embedding step is often found to
hamper the performance of analog QCs72. The CFA method is a clever extension of
the MC method, in which each Boolean logic gate can be directly embedded onto the
qubits of the QPU (see Fig. 3b). Finding such custom embeddings is very often the
key to successfully solve larger problems on analog QCs.

Further details about each method are given in Ref. 70 and supporting data and open-source
code can be found in Ref. 73.

A complimentary approach to solving the IFP is based on Schnorr’s algorithm74, 75.
Here one does not encode the factors p and q directly in terms of qubits (cf. Eqs. (2) and
(3)). Instead, the IFP is first mapped to a lattice problem, which is then mapped to a
QUBO problem. Interestingly, this QUBO problem may need very few qubits, and the
approach has been used to factorise up to 100-bit numbers76–80. However, concerns about
the claimed scalability of the approach have been raised81–84, and it is an open question
whether Schnorr’s algorithm can really be used to address large-scale IFPs.

3.2 Results

We have evaluated each of the three factorisation methods for 337 randomly generated
factoring problems with up to l = 22 unknown bits. The largest factored semiprimes N
and the corresponding success frequencies f for the three methods were:

1. Direct Method: N = 1042 441 with f = 3.72% ,
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2. MC Method: N = 1042 441 with f = 0.01% ,

3. CFA Method: N = 3844 417 with f = 0.01% .

The results are shown in Fig. 4a. All methods show larger average success frequencies
than random guessing, but the results still suggest an exponential scaling as a function of l.

Interestingly, the MC method with a fitted scaling exponent of −1.1 seems to perform
asymptotically worse than random guessingk. We conjecture that this result is due to the
requirement for additional physical qubits e.g. from the embedding procedure.

In contrast, the custom-embedded CFA method shows a performance that seems
asymptotically better than random guessingl. Also, the global minimum of the cost func-
tion was found for much larger problems (see Fig. 4b). Although the scaling still seems
exponential, a sufficiently small exponent might actually allow analog QCs to first succeed
in the near-term factoring challenge posed in Ref. 15. It is certainly interesting to see how
the future Advantage2 QPU that is expected to have over 7000 qubits with most qubits
coupled to 20 others65—which is larger than 15 on the current JUPSI QPU—will cope
with the difficult problem of factoring integers.

4 Conclusions and Outlook

In this article, we have studied the problem of factoring integers—one of the key problems
that has fuelled the interest in quantum computing—on both digital and analog QCs. For
digital QCs, we have analysed an error model for which Shor’s factoring algorithm7, 9

can be proven to fail44, and we have found that unexpected “lucky” factorisations15 and
sophisticated post-processing procedures43, 42 can mitigate this effect.

For analog QCs, we have performed experiments on a quantum annealer. Among
three studied factorisation methods, we found evidence that the custom-embedded CFA
method26 performs absolutely and asymptotically better than random guessing, although
the data still suggests an exponential scaling as a function of problem size.

Although our results suggest that either error correction on digital QCs or a new method
on analog QCs would be necessary, we believe that the factorisation challenge posed in
Ref. 15 might be solvable in the near term, and it will be very interesting to see whether
it can first be met on a digital or an analog QC. It is conceivable—should the IFP ever
be practically solvable with polynomial resources for large integers—that maybe also a
triple-hybrid use85 along with conventional supercomputers may be successful.
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