001042583 001__ 1042583
001042583 005__ 20250606202253.0
001042583 0247_ $$2doi$$a10.5194/egusphere-egu25-3820
001042583 037__ $$aFZJ-2025-02579
001042583 1001_ $$0P:(DE-HGF)0$$aNoble, Phoebe$$b0$$eCorresponding author
001042583 1112_ $$aEGU General Assembly 2025$$cVienna$$d2025-04-27 - 2025-05-02$$wAustria
001042583 245__ $$aStratospheric Gravity waves in AIRS observations and high-resolution models
001042583 260__ $$c2025
001042583 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1749213084_18975
001042583 3367_ $$033$$2EndNote$$aConference Paper
001042583 3367_ $$2BibTeX$$aINPROCEEDINGS
001042583 3367_ $$2DRIVER$$aconferenceObject
001042583 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001042583 3367_ $$2ORCID$$aOTHER
001042583 520__ $$aAtmospheric gravity waves vary hugely in scale; with horizontal wavelengths ranging from a few to thousands of km. Typically, gravity waves are smaller than model grid-size and as a result, their effects are parametrised instead of being explicitly resolved. However, recent computational and scientific advancements have allowed for the development of higher resolution global-scale models. These models have horizontal resolutions of order a few km with around 1km vertical resolution in the stratosphere. At such scales, it should in principle be possible to accurately simulate the majority of GWs without relying on parametrisation.In this work, we use data from three models from the DYAMOND Initiative (DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains). Specifically, IFS (Integrated Forecast System – produced by ECMWF) at 4km horizontal resolution, ICON (Icosahedral NonHydrostatic) at 5km horizontal resolution and GEOS (Goddard Earth Observing System model) at 3km horizontal resolution. All models are initialised with the same initial conditions and are free running for 40 days. We then compare the properties of resolved gravity waves with observations from the AIRS instrument (Atmospheric InfraRed Sounder) onboard NASA’s Aqua satellite. Importantly, we note that the AIRS observations are limited by the ‘observational filter’, wherein each observing system can only `see' a limited portion of the full GW spectrum. To account for this, an important step in this work is in resampling the model atmospheres as though viewed by the AIRS instrument.We compare the representation of resolved waves in the three models and AIRS observations across 40-days in Austral winter. We use a recently developed machine learning wave identification method to separate gravity waves in the dataset and determine gravity wave occurrence frequencies. Next, we use spectral analysis to estimate gravity wave amplitudes, wavelengths and calculate momentum fluxes and the intermittency of gravity waves. This work provides an essential evaluation of the accuracy of current gravity wave modelling capabilities.
001042583 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001042583 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001042583 588__ $$aDataset connected to CrossRef
001042583 7001_ $$0P:(DE-HGF)0$$aOkui, Haruka$$b1
001042583 7001_ $$0P:(DE-HGF)0$$aAlexander, Joan$$b2
001042583 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b3$$ufzj
001042583 7001_ $$0P:(DE-HGF)0$$aHindley, Neil$$b4
001042583 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b5$$ufzj
001042583 7001_ $$0P:(DE-HGF)0$$aHolt, Laura$$b6
001042583 7001_ $$0P:(DE-HGF)0$$avan Niekerk, Annelize$$b7
001042583 7001_ $$0P:(DE-HGF)0$$aPlougonven, Riwal$$b8
001042583 7001_ $$0P:(DE-HGF)0$$aPolichtchouk, Inna$$b9
001042583 7001_ $$0P:(DE-HGF)0$$aStephan, Claudia$$b10
001042583 7001_ $$0P:(DE-HGF)0$$aBramberger, Martina$$b11
001042583 7001_ $$0P:(DE-HGF)0$$aCorcos, Milena$$b12
001042583 7001_ $$0P:(DE-HGF)0$$aWright, Corwin$$b13
001042583 773__ $$a10.5194/egusphere-egu25-3820
001042583 909CO $$ooai:juser.fz-juelich.de:1042583$$pVDB
001042583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b3$$kFZJ
001042583 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b5$$kFZJ
001042583 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001042583 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001042583 9141_ $$y2025
001042583 920__ $$lyes
001042583 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x0
001042583 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
001042583 980__ $$aabstract
001042583 980__ $$aVDB
001042583 980__ $$aI:(DE-Juel1)ICE-4-20101013
001042583 980__ $$aI:(DE-Juel1)JSC-20090406
001042583 980__ $$aUNRESTRICTED