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Understanding the high-dimensional chaotic dynamics occurring in complex biological systems such as
recurrent neural networks or ecosystems remains a conceptual challenge. For low-dimensional dynamics, fixed
points provide the geometric scaffold of the dynamics. However, in high-dimensional systems, even the location
of fixed points is unknown. Here, we analytically determine the number and distribution of fixed points for
a canonical model of a recurrent neural network that exhibits high-dimensional chaos. This distribution reveals
that fixed points and dynamics are confined to separate shells in state space. Furthermore, the distribution enables
us to determine the eigenvalue spectra of the Jacobian at the fixed points, showing that each fixed point has a
low-dimensional unstable manifold. Despite the radial separation of fixed points and dynamics, we find that the
principal components of fixed points and dynamics align and that nearby fixed points act as partially attracting
landmarks for the dynamics. Our results provide a detailed characterization of the fixed point geometry and its
interplay with the dynamics, thereby paving the way towards a geometric understanding of high-dimensional
chaos through their skeleton of unstable fixed points.
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I. INTRODUCTION

Complex systems with heterogeneous interactions are
ubiquitous in biology, from large-scale ecosystems [1] to
neural networks [2,3]. These systems are characterized by
nonlinear and asymmetric interactions that generate rich
collective dynamics, including stable fixed points, limit cy-
cles, and chaos [4]. Chaotic behavior has been observed
in both ecosystems [5,6] and neural networks [7–9]. In-
deed, in high-dimensional systems with asymmetric, random
interactions, chaos appears to be the rule rather than the
exception [10].

While chaotic dynamics are well understood in low-
dimensional systems, they present significant challenges in
high dimensions [4], particularly for “extensive chaos” where
the chaotic dynamics themselves are high dimensional. In
low-dimensional systems, fixed points provide geometric in-
sight into chaotic dynamics—exemplified by the two unstable
fixed points at the centers of the Lorenz attractor [11]. How-
ever, the state space of high-dimensional nonlinear systems
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remains largely unexplored. Although it is known that the
number of fixed points can grow exponentially with dimen-
sion [12–14], and that these fixed points must be unstable in
chaotic systems [12], their spatial distribution and relationship
to the dynamics remain unknown.

We address these challenges in the context of the canonical
chaotic neural network model introduced by Sompolinsky
et al. [7]. This model is particularly suitable because dy-
namical mean-field theory [7,15] (reviewed pedagogically in
[16]) has provided detailed insights into its dynamics for large
networks. Specifically, the theory predicts a transition to chaos
above a critical connection strength [7,17]. Recent investiga-
tions of cross correlations [18] and the complete Lyapunov
spectrum [19] have confirmed the extensive nature of chaos
in this system. The approach based on dynamic mean-field
theory has proven to be robust, revealing the dynamical prop-
erties of various extensions of the model [20–31].

In this work, we determine the spatial distribution of fixed
points of the chaotic neural network model. Our approach
relies on computing the expected zero crossings of a Gaussian
process with location-dependent statistics. By comparing the
geometries of the fixed points and dynamics, we demonstrate
their confinement to separate shells in state space. Analy-
sis of higher-order statistics reveals alignment between the
principal components of the fixed points and the dynamics.
After characterizing the local dynamics at the fixed points, we
demonstrate that the fixed points serve as transiently attractive
landmarks that guide the chaotic flow.
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II. MODEL

We consider a generalized version of the model from [7],
including neuronal heterogeneity and external input [17]. In
this generalized version, the model consists of N nonlinearly
connected neurons xi(t ) obeying the system of ordinary dif-
ferential equations

ẋi = −xi +
N∑

j=1

Ji jφ(x j ) + ηi + ξi(t ), (1)

with neuronal nonlinearity φ(x) = tanh(x), independent
and identically distributed (i.i.d.) coupling weights Ji j ∼
N (0, g2/N ), i.i.d. set points ηi ∼ N (0, D), and i.i.d. Gaussian
noise ξi with 〈ξi(t )〉 = 0 and 〈ξi(t )ξi(t ′)〉 = σ 2δ(t − t ′). The
strength of the recurrent connections is controlled by g; D and
σ control the neuronal heterogeneity and the external noise
input, respectively.

Throughout the manuscript, we assume that the network
is in the chaotic regime g > gc [7,17] and that the number
of units, N , is sufficiently large to allow us to focus on the
leading, exponential scale of the behavior, which we express
by the abbreviated notation a

.= eNb to denote limN→∞ 1
N

ln a = b.

III. FIXED POINT DISTRIBUTION

We use vector notation to write Eq. (1) as ẋ = y(x) + ξ(t )
with velocity y(x) = −x + Jφ(x) + η. Since J and η are
Gaussian, the velocity y(x) and the Jacobian y′(x) = −1 +
J diag[φ′(x)] are Gaussian processes in state space [note that
both y(x) and y′(x) are nonhomogeneous, i.e., their statistics
depend on absolute position x]. Due to the randomness of
y(x), the location of the fixed points y(x) = 0 is described
by a distribution ρ(x). This distribution counts how many
fixed points are on average within an infinitesimal volume in
state space. We determine ρ(x) from the Kac-Rice formula
[32–34],

pfp(x) = 〈
N−1

fp δ[y(x)] | det y′(x)|〉
J,η

, (2)

where the normalization is given by the number of fixed
points, Nfp, the Dirac δ enforces y(x) = 0, and the Jacobian
determinant | det y′(x)| ensures that every fixed point con-
tributes to the distribution with equal weight. We assume that
the number of fixed points is strongly self-averaging such that
we can separate the averages,

ρ(x) = 〈δ[y(x)] | det y′(x)|〉J,η, (3)

with norm 〈Nfp〉J,η = ∫
dx ρ(x). Equation (3) is equivalent to

a random matrix problem (see Appendix A): Using Bayes’
law to condition on y(x) = 0, ρ(x) can be rewritten into (see
Supplemental Material [[35], A1])

ρ(x) = pL(x)〈|det [M(x) + X �(x)]|〉Xi j∼N (0,N−1 ), (4)

where the first factor pL(x) = N [x | 0, κ (x) + D] with κ (x) =
g2

N

∑N
i=1 φ(xi )2 is the probability of the velocity to be zero and

the second factor is the expected determinant of a random ma-
trix with mean M(x) and covariance �(x)T�(x) controlling
for the fluctuations of the velocity process. Here, κ (x) + D
is the variance of the independent Gaussian processes [y(x)]i,

M(x) is the mean of the Gaussian process y′(x) conditioned on
y(x) = 0, and N−1�(x)T�(x) is the covariance matrix of the
independent rows of y′(x) conditioned on y(x) = 0. Extending
the technique introduced in [36] and excluding singularities,
the determinant is given by

〈|det [M(x) + X �(x)]|〉 .= exp[Nζ (x)], (5)

with (see Supplemental Material [[35], A2])

ζ (x) = −1

2
z∗ + 1

2N

N∑
i=1

ln[1 + z∗g2φ′(xi )
2], (6)

where z∗ is the solution of

1 = 1

N

N∑
i=1

g2φ′(xi )2

1 + z∗ g2φ′(xi )2
. (7)

To summarize, the N-dimensional distribution of the fixed
points is ρ(x)

.= exp [ − NS(x)], with

S(x) = u(x)

2[κ (x) + D]
+ 1

2
ln {2π [κ (x) + D]} − ζ (x), (8)

where u(x) = 1
N

∑N
i=1 x2

i and ζ (x) is determined by Eqs. (6)
and (7).

Since incoming and outgoing weights Ji j of all units are
statistically equivalent, the averaged fixed point distribution
ρ(x) is permutation symmetric, which implies an approx-
imate independence of coordinates

∫
ρ(x) dxk+1 . . . dxN ≈∏k

i=1 μ(xi ) for k 
 N (see Supplemental Material [[35], B3]).
The permutation symmetry is reflected by the property that the
fixed point distribution, given by Eq. (8), depends on x only
through network averages. Consequently, we can express it as
a functional ρ(x) = ρ[μx] of the empirical measure,

μx(y) = 1

N

N∑
i=1

δ(y − xi ), (9)

which is the empirical distribution of vector components of
x. From the expected empirical measure at the fixed points
μ∗(y) = 〈μx(y)〉x∼ρ(x), all network-averaged expectation val-
ues 〈 1

N

∑N
i=1 f (xi )〉x∼ρ(x) = ∫

dy μ∗(y) f (y) can be computed.
The expected empirical measure is given, for large N , by
the saddle point that maximizes ρ[μx] in function space and
admits the form (see Appendix B)

μ∗(y) ∝
√

1 + αφ′(y)2e− y2+γφ(y)2

2β , (10)

for which the parameters α, β, and γ are determined by
1 = g2〈(φ′(y)−2 + α)−1〉μ∗ , β = g2〈φ(y)2〉μ∗ + D, and γ =
g2(1 − β−1〈y2〉μ∗ ) where expectation values have to be taken
self-consistently with respect to μ∗.

We compare the empirical measure given by Eq. (10) to the
distribution of vector components of numerically determined
fixed points. For the numerical results, we fix the realization
of the random parameters and employ a Levenberg-Marquart
rootfinder [37,38] starting from independent normally dis-
tributed initial conditions until saturation, until almost no
new fixed points are found (see Supplemental Material
[[35], E]). Figure 1(a) shows that the theory given by Eq. (10)
is in excellent agreement with the empirical measure averaged
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FIG. 1. Characterization of fixed points. (a) Distribution of vec-
tor components of fixed points (empirical measure): theoretical result
(solid line) based on Eq. (10) and histogram (bars) averaged across
4 × 104 fixed points for a single realization of the coupling weights
with D = 0.1 and g = 4. (b) Same as (a) for a randomly chosen
single fixed point. (c) Empirical measure for different values of
g. (d) Scaled squared norm of fixed points (theory: red solid line;
theoretical finite-size standard deviation: yellow shading; numerical
results: orange error bars), dynamics (theory: blue solid line; numer-
ical integration averaged over 15 realizations per g: turquoise error
bars), and maximum scaled squared norm above which the number
of fixed points is no longer exponential (gray dotted line). (e) Number
of fixed points (topological complexity; solid lines: theory, Eq. (13);
crosses: numerical results, Supplemental Material [[35], E]; gray
dashed line: theory for g → 1+, D = 0 by [12]). (f) Transition to
positive topological complexity (black dotted line) and transition to
chaos (black solid line) based on [17]. In the regime (∗), the state
space exhibits an exponential number of unstable fixed points, but
the dynamics are not chaotic. Parameters: D = 0.1 and g as indicated
for (a)–(d), N = 100 for numerical results and the shading in (d).

over all fixed points found numerically in a single realization
of J (see Supplemental Material [[35], Fig. 2(a)] for further
examples). Moreover, as shown in Fig. 1(b), even single fixed
points closely resemble the expected empirical measure.

The agreement between the expected empirical measure
and distribution for a single fixed point is not a coinci-
dence. The probability distribution functional of the empirical
measures takes the form P[μ]

.= exp(−NH[μ]) with an ana-
lytically determined rate functional H[μ] (see Supplemental
Material [[35], B2]), which means that it obeys a large de-
viation principle [39,40]; see Appendix C. The minimum of
H[μ] is attained at the expected empirical measure μ∗. Since
P[μ] quantifies both the variability within a realization of the
parameters as well as across realizations (see Supplemental
Material [[35], B2]), akin to the law of total variance, devia-
tions of μ from μ∗ are rare for large N , even at the level of
individual fixed points. Mismatches between μx and μ∗ for
a fixed point x are thus finite-size effects (see Supplemental
Material [[35], Fig. 2(b)] for further examples).

IV. SEPARATE SHELLS OF FIXED POINTS
AND DYNAMICS

First, we investigate the geometry of the fixed point dis-
tribution using the expected empirical measure. A prominent
feature of the empirical measure is the sharp peak and the
Gaussian base [Figs. 1(a)–1(c)]. This shape reflects the com-
promise between the two contributions in the fixed point
density, given by Eq. (4): high probability of a vanishing
velocity, captured by pL(x), and a steep expected slope to
increase the density of zero crossings, captured by the deter-
minant. The former leads to the broad Gaussian base and the
latter to the sharp peak. Geometrically, the sharp peak at zero
implies that the fixed points are in the vicinity of spans of
subsets of axes in state space.

Next, we consider the squared norm u(x) = 1
N xTx, which

quantifies the distance to the origin and which is equal
to the second moment of the empirical measure u(x) =∫

dy y2μx(y), with expectation value

u∗ =
∫

dy y2μ∗(y) = β(1 − γ /g2). (11)

The distribution of the distance P(u) inherits the exponential
form of P[μ]; formally, this is a consequence of the contrac-
tion principle [39]. Thus, P(u)

.= exp[−NI (u)], where the rate
function is

I (u) = inf
μ:

∫
y2μ(y) dy=u

H[μ]. (12)

Hence, for N � 1, the fluctuations of the distance vanish and
the fixed points are distributed on a thin spherical shell with
radius

√
Nu∗, where u∗ [given by Eq. (11)] minimizes I (u). In

Fig. 1(d), we show the average distance and fluctuations based
on Eq. (12) (see Appendix D 1) for N = 100.

To put the fixed point’s distance to the origin into
context with the dynamics, we leverage the result from
dynamic mean-field theory that the network-averaged vari-
ance q[x(t )] = 1

N

∑N
i=1 xi(t )2 is self-averaging for stationary

statistics, with fluctuations vanishing in the large-N limit
[16,30]. Hence, also the trajectory is embedded in a thin shell
around the origin, which is of radius

√
Nq, and q is derived

in [17].
The confinement to a thin spherical shell is a generic

feature of high-dimensional, weakly correlated random vari-
ables [41], but the radius depends on the underlying high-
dimensional distribution. Thus, we compare the radii of the
two shells in Fig. 1(d). For all g > gc, the fixed points’ shell
is inside of the trajectories’ shell. Furthermore, for N → ∞,
the overlap between the shells vanishes and thus the trajec-
tory is clearly separated from the fixed points in state space.
Note, however, that the vanishing overlap is the result of an
exponentially large fraction of the fixed points. In absolute
terms, the number of fixed points at the dynamics shell is
still exponential [see Supplemental Material [[35], C2] and
the gray dotted line in Fig. 1(d)].

V. NUMBER OF FIXED POINTS

A core result of [12] is that without neuronal heterogene-
ity, D = 0, the system has a transition from a single stable
fixed point to an exponential number of unstable fixed points
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〈Nfp〉 .= exp[cN] at gc = 1. The respective rate c, the topolog-
ical complexity, can be computed from the empirical measure
(see Appendix E), leading to

c = γ − α

2g2
− D

γ

2βg2
+ lnZ − 1

2
ln(2πβ ), (13)

where Z is the normalization of Eq. (10). Asymptotically,
at D = 0 and for any sigmoidal nonlinearity with φ′(0) = 1,
c → − 1

π
+ ln [1 + erf (

√
1/π )e1/π ] ≈ 0.264 for g → ∞ and

c = ( 2
3 )

4
ε3 + O(ε4) for g − 1 = ε → 0 (see Supplemental

Material [[35], C4]). Both the cubic growth at the chaos
transition and the saturation at large g are consistent with the
behavior of the effective dimension of the dynamics [18].

In Fig. 1(e), we see that the critical gain parameter gc grows
with D; the corresponding transition line is shown in Fig. 1(f).
For D 
 1, the transition to an exponential number of fixed
points coincides with the transition to chaos. For larger het-
erogeneity D, however, a regime exists where the system has
an exponential number of fixed points, yet the dynamics are
not chaotic (see [42] for a similar observation). Our theory and
numerical results are both in agreement with the critical point
gc = 1 for D = 0 found by [12], but the quantitative value of
the topological complexity clearly differs from the result by
[12] and is well captured by our theory [Fig. 1(e)].

VI. ALIGNMENT OF FIXED POINTS AND DYNAMICS

The analysis thus far shows that there are exponentially
many fixed points which are, however, radially separated from
the dynamics. This suggests a drastic decoupling of fixed
points and dynamics. We investigate this further using higher-
order statistics of fixed points and dynamics.

We consider the dimensionality of dynamics and fixed
points based on the cross-covariance matrix C = 〈(x −
〈x〉)(x − 〈x〉)T〉, where the average is either over the fixed
points (denoted Cfps) or the trajectory of the stationary dynam-
ics (denoted Cdyn) for a fixed realization of J. The variance
of the fixed points or the dynamics projected on the ith
eigenvector (termed principle component) of C is given by
the respective eigenvalue λi, and the eigenvalue participation
ratio (N−1 ∑N

i=1 λi )2/(N−1 ∑N
i=1 λ2

i ) is thus a linear estimate
of the dimension of the set of fixed points or the dynamical
attractor, respectively. For the dynamics, Refs. [18,19] showed
that the dimensionality is extensive but fractional. The same
is true for the fixed points [Fig. 2(a)]. Furthermore, the di-
mensionality grows monotonically with g for dynamics and
fixed points. For the dynamics, the dimensionality saturates at
approximately 6% [18]; for the fixed points, the dimensional-
ity is approximately twice as large. Thus, both dynamics and
fixed points occupy a lower-dimensional subspace of the state
space.

The next question is if these two subspaces are aligned.
To this end, we consider the relative cumulative variance of
either fixed points or dynamics along the first n principal
components of the fixed points,

V ◦
n =

∑n
i=1 vT

i C◦vi∑N
i=1 vT

i C◦vi

, (14)

3 4 5

g

0.0

0.1

P
R

(a) Dimension

0 25 50 75 100

n

0.0

0.5

1.0

V
n

(b) Variance along vfp
i , i = 1, .., n

V fps
n

V dyn
n

V dyn,new
n

V noise
n

FIG. 2. Alignment of fixed points and dynamics. (a) Dimension-
ality of the cloud of fixed points for varying g and D = 0. (b) Relative
cumulative variance given by Eq. (14) of the fixed points (red), the
dynamics (blue), the dynamics including strong external noise σ = 2
(green), and the dynamics with resampled connectivity (gray) along
the n leading principal components of the fixed points for g = 5,
D = 0.

where ◦ ∈ {fps, dyn} specifies the covariance matrix and vi

is the ith principal component of Cfps. The saturation of V fps
n

at n ≈ 0.1N (black dotted line) corresponds to the dimen-
sionality of ≈10%. For the dynamics, V dyn

n saturates almost
as quickly, showing that the embedding manifolds of fixed
points and dynamics align nearly perfectly. Importantly, this
is only true for a given realization of J: the relative variance
of dynamics V dyn,new

n with resampled Jnew captured by the
principal components of the fixed points from the original J
grows linearly with the number of components [Fig. 2(b), gray
line]; thus, across realizations, the dynamics and fixed points
do not align. Last, adding strong external noise (σ = 2) to the
dynamics does not foil the alignment. This indicates that fixed
points of the model for σ = 0 also provide insight into the
noisy case σ > 0.

In summary, considering the higher-order statistics shows
that the dynamics are contained near the manifold occupied
by the fixed points. For the dynamics, the alignment can be
traced back to the most repulsive eigenvectors of the Jacobian
at the origin y′(0) = −1 + J [18]. Due to the alignment of
fixed points and dynamics, this holds for the fixed points as
well. At the origin, the alignment of Jacobian and fixed points
implies that the dynamics are repelled towards the other fixed
points within the lower-dimensional subspace.

VII. LOCAL DYNAMICS

We now consider the dynamics in the vicinity of fixed
points x∗ outside the origin. Local dynamics are determined
by the eigenvalues of the Jacobian y′(x∗) at these fixed points.
The Jacobian can be written as y′(x) = −1 + X diag[gφ′(x)]
with Xi j ∼ N (0, N−1); the corresponding eigenvalue spec-
trum can be computed with the method developed in [43]
because diag[gφ′(x)] is invertible. For large N , the eigen-
value distribution of y′(x) is centered around −1 + 0i and
confined within a circle of radius R(x) = g

√
N−1φ′(x)Tφ′(x)

[Figs. 3(a) and 3(b)]. At a fixed point, the contraction principle
attests a large deviation principle for the spectral radius, with
the expected value given by

R∗ = g

√∫
dy φ′(y)2μ∗(y). (15)
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FIG. 3. Jacobian spectrum at fixed points. (a) Eigenvalues (or-
ange dots) of the Jacobian at five randomly chosen fixed points of
one realization of J and η. Every eigenvalue with positive real part
corresponds to an unstable mode of the fixed point. The support of
the spectrum (black circle) is determined by the spectral radius, given
by Eq. (15). (b) Spectral radius: theory (black line) and numerical
results (pink error bars). (c) Radial tail distribution of eigenvalues:
theory (black line) based on Eq. (16) and histogram (orange bars)
based on the eigenvalues shown in (a). (d) Theory from (c) for
varying g. Parameters: N = 100, g = 3 in (a) and (c), D = 0.1.

This radius is always >1 in the chaotic phase (Fig. 3), indicat-
ing that for large N , all fixed points are unstable.

Within the support, the distribution of eigenvalues is
isotropic around the center [Fig. 3(a)]. We express the dis-
tribution by the fraction of eigenvalues further than r from the
center nx(r), termed the radial tail distribution. It obeys, again,
a large deviation principle dominated by the solution n∗(r) of

1 =
∫

dy μ∗(y)
g2φ′(y)2

r2 + n∗(r) g2φ′(y)2
. (16)

We present the solution in Fig. 3(c), which shows that the
unstable modes of fixed points are strongly underrepresented
relative to a uniform spectrum. The overrepresentation of
eigenvalues on the real line [Fig. 3(a)] and the smearing of
the spectral radius [Fig. 3(c)] are known finite-size effects
[44,45].

These results show that most directions of the fixed points
are stable. Thus, within the vicinity of a fixed point, the dy-
namics are attracted towards it from most directions. However,
eventually the unstable directions dominate and the trajecto-
ries are expelled from the fixed point along these directions.

VIII. IMPACT OF FIXED POINTS

Wainrib and Touboul [12] proposed an intriguing “topolog-
ical explanation for the emergence of chaos”: the dynamics
meanders around the unstable fixed points and the interplay
between attraction along their stable directions and repulsion
along their unstable directions leads to the high sensitivity
to perturbations which is characteristic for chaos. The radial
separation of fixed points and dynamics uncovered above
seemingly contradicts this explanation, while the alignment
of dynamics and fixed points seems to support it. Using the
empirical sample of fixed points, we now investigate their
relation to the dynamics in more detail.

FIG. 4. Impact of fixed points. (a) Pearson correlation between
y(x0 ), where x0 is on the attractor, and its linear predictor y(x1) +
y′(x1)[x0 − x1] for radially perturbed points x1 (black line) and near-
est fixed points (purple error bar). Histograms show the density of
the norm of the fixed points that are closest to the dynamics (pink)
and to random points on the dynamics shell (green); the dashed line
shows the mean norm of all fixed points. Parameters: g = 5, D = 0,
and N = 300 (perturbations) or N = 100 (fixed points); shadings
denote standard deviation. (b) Like (a), but for angular perturbed

points x1 = ax0 + √
1 − a2‖x0‖z, where zi

i.i.d.∼ N (0, 1/N ), and the
parameter a ∈ [−1, 1] is varied to interpolate between x0 and z such
that different angles between x0 and x1 are realized. (c) Density of
Pearson correlation of the velocity y(x(t )) with the pointer x∗ − x
to a randomly chosen fixed point for 400 trajectories starting from
random initial points with norm 1

N ‖x‖2 = c0, where c0 is the asymp-
totic squared norm for g = 4 and D = 0. (d) Density of Pearson
correlation between the velocity in (c), with the velocity predicted
linearly from the fixed point at the origin (orange histogram, top),
and for a randomly chosen fixed point for each trajectory (blue
histogram, bottom). (e) Mean Pearson correlation between y(x(t ))
and its linear predictor as in (a), where x0 is the nearest (solid lines)
or second-nearest (dotted lines) fixed point at t ∈ {5, 10, 15, 20}.

The topological explanation implicitly assumes that the
local dynamics at the nearest fixed point x∗ captures the
essential properties of the full dynamics. We test this assump-
tion by checking if the linearization provides a satisfactory
prediction of the actual velocity y[x(t )]: given the linear
predictor y1(t ) ≡ y(x∗) + y′(x∗)[x(t ) − x∗], we quantify the
accuracy of the prediction by the average Pearson correlation
between y[x(t )] and y1(t ), where x∗ is the nearest fixed point
at each time t for six trajectories of length 50. On average,
the correlation with the nearest fixed points’ linear predictor
is approximately 0.5 [Figs. 4(a) and 4(b), purple error bar].
While this is a high correlation given the high dimensionality
N , there is still a gap to a perfect correlation.

The gap to perfect correlation could be caused by the radial
separation of fixed points and dynamics. Accordingly, we also
linearize the velocity around points that are radially shrunk
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or stretched from x(t ). For these points, the linearized veloc-
ity still predicts the dynamics well at radial distances equal
to the separation of fixed points and dynamics [Fig. 4(a)].
Thus, the gap is not caused by the radial separation. However,
linearizing around points that are rotated by a fixed angle
into a random tangential direction quickly degrades the pre-
dictive power at angular distances equal to the separation of
fixed points and dynamics [Fig. 4(b)]. Thus, the remaining
gap to perfect predictability must be attributed to the angular
separation.

Interestingly, the angular separation between dynamics
and fixed points is small compared to the angular separa-
tion between fixed points and random control points that are
statistically equivalent to the dynamics [Fig. 4(b), green his-
togram]. The small angular distance at which the dynamics
passes the fixed points can be shown to result from a major-
ity of attractive directions (see Supplemental Material [[35],
D1]): Almost every sample from a sphere around a fixed point
moves towards it due to the predominance of stable eigenval-
ues. In contrast, the expected constant velocity of equivalent
points p with elements drawn i.i.d. from the empirical mea-

sure, pi
i.i.d.∼ μ∗, is nonzero, which renders p highly repulsive.

In this sense, fixed points can be seen as landmarks of
the stationary dynamics [46]: Starting from a random initial
condition, the system moves towards the bulk of fixed points;
see the decreasing correlation of y(x(t )) and x∗ − x, where x∗
is a randomly chosen fixed point, in Fig. 4(c). This is reflected
by a strong correlation between the initial velocity and its
linear predictor at randomly chosen fixed points [Fig. 4(d),
bottom] and, most importantly, the origin [Fig. 4(d), top].
The correlation with both the origin and random fixed points
quickly declines, hinting towards the system having arrived at
the fixed point’s manifold, although at higher distance to the
origin. From here on, the system is mostly drawn and slightly
less pushed by the ever-changing current subset of nearby
fixed points, as indicated by the increasing and decreasing
correlation between y(x(t )) and y1 based on a nearby fixed
point [Fig. 4(e)].

IX. DISCUSSION

In this manuscript, we characterize the state space struc-
ture of a chaotic neural network using the distribution of
fixed points. We identify a decoupling of the chaos transition
and the emergence of unstable fixed points. We furthermore
show a spatial separation between fixed points and dynamics.
Interestingly, the principal components of fixed points and
dynamics are aligned, despite their radial separation. Last,
we establish the dynamic role of the fixed points as attractive
landmarks for the trajectory.

In high-dimensional linear dynamical systems, May’s pi-
oneering stability analysis [1] enabled considerable insights
into the dynamics of ecosystems [47]. In the nonlinear case,
the number of fixed points can be determined if the velocity is
generated by a homogeneous Gaussian potential [48]; in this
case, it is even possible to determine the number of minima
of the potential [49–51] with applications in deep learning
[52,53]. The nonpotential case has been addressed in [12]
for the random network (1) at g = 1 + ε with ε 
 1, in [13]

for a velocity field based on a homogeneous Gaussian field
(for which it is possible to extend the analysis to the fraction
of stable directions of fixed points [54]), and in [14,55] for
a Lotka-Volterra model. Other nonhomogeneous cases have
been studied in [56] with dynamics constrained to a sphere
and in [57] with a metastable model where the distance of the
fixed points to the origin determines which initial conditions
decay or escape. For a recent review on stationary points of
random fields, see [58].

Here, we go beyond the previous results and determine the
distribution of fixed points, which includes their number, of
the random neural network (1) for arbitrary g > gc. To this
end, we extend methods from random matrix theory [36,43] to
compute the determinant of non-Hermitian random matrices
with a correlation structure including low-rank terms. The
analysis is restricted to the average number of fixed points,
which provides an upper bound to the typical number of fixed
points [14,55]. Our empirical results suggest that the bound
is tight; for the density of fixed points, we also expect no
difference between quenched and annealed behavior due to
the excellent match of empirical and theoretical density.

The results presented here aim to pave the way towards a
geometric understanding of the state space underlying high-
dimensional chaotic systems. There are several directions for
further research: First, it would be interesting to extend the
analysis to more structured networks, for example in terms of
low-rank perturbations [27], levels of symmetry [36,59,60],
or population structure [22,23,30]. Second, the frustration
created by the quenched rotation between the axes system,
singled out by the elementwise application of the nonlinearity,
and the eigensystem of the connectivity creates the complexity
of the state space—what is the geometric relation between the
axes system and the dynamics on the chaotic attractor? Last,
deep insights into trained neural networks are possible by an-
alyzing their state space [61,62]. Here, we analyzed the phase
space of a random reservoir which already allows universal
computation if the readout is optimized [63]—more generally,
learning with chaotic networks [29,64–66] is a direction of
research that might be able to leverage the exponential number
of fixed points and the associated capability for sequence
processing.
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APPENDIX A: FROM KAC-RICE TO RANDOM
MATRIX THEORY

Here, we show the equivalence of Eqs. (3) and (4). The
N (N + 1) random variables J, η are isomorphic, at almost
every fixed x, to the N (N + 1) variables y(x), y′(x). Thus,
the integral over J and η implied by the expectation value in
Eq. (3) can be substituted into an integral over y(x) and y′(x).
Carrying out the substitution (detailed in the Supplemental
Material [[35], A1]), one can use the Dirac δ(y) to solve the∫

dy integral, which leads to

ρ(x) =
∫

dy′ px(y = 0, y′) | det y′|, (A1)

where px(y, y′) = ∏N
i=1 px(yi, y′

i ) is the joint probability dis-
tribution (at x) of y and y′, and here y′

i is the ith row of y′.
Specifically, px(y, y′) is a multivariate Gaussian,(

yi

y′
i

)
i.i.d.∼ N

[(
μi(x)
μi(x)

)
,

(
[κ (x) + D] k(x)T

k(x) K(x)

)]
, (A2)

with

κ (x) = g2

N

∑
k

φ(xk )2, (A3)

[k(x)]k = g2

N
φ(xk )φ′(xk ), (A4)

[K(x)]kl = δkl
g2

N
φ′(xk )2. (A5)

Equation (A1) is an alternative formulation of the Kac-Rice
formula [34,68]. One may rewrite px(y, y′) = px(y) px(y′|y)
into the marginal distribution of the velocity y and the
conditional distribution of the Jacobian y′. Following [[69],
Appendix A2], we find the probability to be at zero velocity,
termed level probability pL(x) ≡ px(y = 0),

pL(x) = 1
√

2π [κ (x) + D]
N e− xTx

2[κ (x)+D] . (A6)

Furthermore, the conditional distribution of the Jacobian is
[[69], Appendix A2]

px(y′|y = 0) =
∏

i

N [y′
i|Mi(x), C(x)], (A7)

where the mean conditioned Jacobian is

Mi j (x) = −δi j − g2

N

xiφ(x j )φ′(x j )

κ (x) + D
, (A8)

and each row y′
i has the same covariance matrix,

Cnm = δnm
g2

N
φ′(xn)2 − g4

N2

φ(xn)φ′(xn)φ(xm)φ′(xm)

κ (x) + D
. (A9)

The random matrix characterized in Eq. (A7) can be
expressed as

y′ = M(x) + X �(x), (A10)

where Xi j
i.i.d.∼ N (0, 1/N ) and

�(x) =
[
1 − g2

N

φ(x)φ(x)T

κ (x) + D[1 + √
1 + κ (x)/D]

]

× gdiag[φ′(x)], (A11)

which can be checked by comparing moments.
Concluding, substituting Eq. (3) to get Eq. (A1), condition-

ing on y = 0, and plugging in the expressions Eqs. (A6) and
(A10) leads to Eq. (4). The remaining technical difficulty is
to solve the random matrix theory problem of computing the
expected modulus determinant of Eq. (A10). As detailed in the
Supplemental Material [[35], A2], the determinant is given by
Eq. (5).

APPENDIX B: EXPECTED EMPIRICAL MEASURE

In this Appendix, we compute the expected empirical mea-
sure μ∗(y) = 〈μx(y)〉x∼ρ(x). To this end, we follow the method
presented in [30] and [39]. We consider the characteristic
functional

Z[ j] = 〈
ei jTμx

〉
x∼ρ(x) = 〈

ei 1
N

∑N
i=1 j(xi )

〉
x∼ρ(x), (B1)

where j(y) is an auxiliary external source field and jTμx =∫
dy j(y)μx(y) denotes a functional scalar product (this no-

tation will be implicit in the following). By 〈◦〉x∼ρ(x), we
mean the average with respect to ρ(x)/[

∫
dz ρ(z)]. We de-

fine the scaled cumulant generating functional as WN [ j] =
1
N ln Z[N j]. The expected empirical measure is the first Taylor
coefficient of WN ,

μ∗(y) = δ

δ j(y)
WN [ j]| j(y)=0. (B2)

Plugging in the fixed point distribution given by Eq. (8), we
have

WN [ j] = 1

N
ln

∫
dx e−NS(x)+i

∑
i j(xi ) − c, (B3)

c = 1

N
ln

∫
dxρ(x) = 1

N
ln〈Nfp〉. (B4)

The rate c is the topological complexity [12].
Next, we evaluate the integral in Eq. (B3). To this end,

we first express S(x) = S[μx] by the empirical measure by
expressing the scalars u, κ , ζ , and z∗ through μx instead of x,
specifically,

u[μx] =
∫

dy y2μx(y), (B5)

κ[μx] = g2
∫

dy φ(y)2μx(y), (B6)

ζ [μx] = −1

2
z∗[μx] + 1

2

∫
dy ln[1 + z∗[μx]g2φ′(y)2],

(B7)

1 =
∫

dy
g2φ′(y)2

1 + z∗[μx]g2φ′(y)2
. (B8)
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Next, we introduce an auxiliary field μ(y) that we use to
replace the x-dependent field μx(y). For this to be correct,
we multiply the integrand by the functional Dirac constraint
δ[μ − μx] ≡ limM→∞

∏M
m=1 δ[μ(ym) − μx(ym)], where {y1,

. . . , yM} M→∞→ R is a discretization of the real line. Then, we
have to integrate over μ(y) in a functional sense,

∫
Dμ ≡

limM→∞
∫ ∞
−∞

∏M
m=1 dμm, μm = μ(ym) discretizes μ, for the

replacement to occur at every point in the x integration. Lastly,
we replace the functional Dirac constraint by its Fourier inte-
gral representation,

δ[μ − μx] =
∫

Dμ̃ e−iNμ̃T(μ−μx )

=
∫

Dμ̃ e−iNμ̃Tμ+i
∑N

i=1 μ̃(xi ), (B9)

where ∫
Dμ̃ ≡ lim

M→∞

∫ ∞

−∞

M∏
m=1

N
dμ̃m

2π
, (B10)

and μ̃m = μ̃(ym) discretizes μ̃. With the auxiliary fields μ and
μ̃, the x integral in Eq. (B3) formally factorizes,

WN [ j] = 1

N
ln

∫
DμDμ̃ e−iNμ̃Tμ+N ln �[μ,μ̃, j] − c, (B11)

�[μ, μ̃, j] =
∫

dx√
2π (κ[μ] + D)

e− x2

2(κ[μ]+D) +ζ [μ]+i j(x)+iμ̃(x)
.

(B12)

Note that this factorization into identical integrals
∫

dx is only
formal: The integrals are still coupled through their common
dependence on the fields μ and μ̃.

Saddle-point approximation. The exponent of the integrand
in Eq. (B11) is proportional to N , and thus the leading order
is given by the saddle-point approximation,

WN [ j] = −iμ̃∗[ j]Tμ∗[ j] + ln �{μ∗[ j], μ̃∗[ j], j} − c,
(B13)

where

μ∗[ j](y) = δ ln �

δ iμ̃(y)

∣∣∣∣
μ∗[ j],μ̃∗[ j]

,

iμ̃∗[ j](y) = δ ln �

δ μ(y)

∣∣∣∣
μ∗[ j],μ̃∗[ j]

(B14)

are the maxima of the exponent of the integrand in Eq. (B11).
With this, we can compute the expectation value of μx in
saddle-point approximation: Evaluating Eq. (B2) gives

μ∗(y) = δ ln �{μ∗[0], μ̃∗[0], j}
δ j(y)

∣∣∣∣
j=0

= μ∗[0](y), (B15)

where we used Eqs. (B14) in the first step to eliminate the
chain-rule derivatives and, in the second step, to identify the
result with μ∗[0]. Therefore, the derivative in Eq. (B15) only
acts on the explicit dependency of � on j.

Next, we solve the saddle-point equations (B14) for j = 0.
The first saddle-point equation (by straightforward functional

differentiation) is

μ∗(y) = e− y2

2(κ[μ∗]+D) +ζ [μ∗]+iμ̃∗(y)

√
2π (κ[μ∗] + D)�[μ∗, μ̃∗]

. (B16)

The second saddle-point equation

iμ̃∗(y) = 1

�

(
∂�

∂κ

δκ[μ]

δμ(y)
+ ∂�

∂ζ

δζ [μ]

δμ(y)

)∣∣∣∣
μ∗,μ̃∗

(B17)

involves chain-rule derivatives. We need the derivative of κ ,

δκ[μ]

δμ(y)
= g2φ(y)2, (B18)

and we need the derivative of ζ [μ] as in Eq. (B7). We find

δζ [μ]

δμ(y)
= −1

2

δz∗[μ]

δμ(y)

[
1 −

∫
dx μ(x)

g2φ′(x)2

1 + z∗[μ]g2φ′(x)2

]

+ 1

2
ln{1 + z∗[μ]g2φ′(y)2}, (B19)

where the first part vanishes due to the definition of z∗; see
Eq. (B8). Concluding, the saddle-point equation for μ̃ is

iμ̃∗(y) = g2φ(y)2

2(κ[μ∗] + D)

( 〈x2〉μ∗

κ[μ∗] + D
− 1

)

+ 1

2
ln{1 + z∗[μ∗]g2φ′(y)2}. (B20)

The expected empirical measure is determined by the simul-
taneous solution of Eqs. (B16) and (B20). Combining them
leads to Eq. (10). At the saddle point,

α = z∗[μ∗]g2, (B21)

β = κ[μ∗] + D, (B22)

γ = g2

(
1 − u[μ∗]

β

)
. (B23)

APPENDIX C: LARGE DEVIATIONS
OF THE EMPIRICAL MEASURE

Here, we discuss how the empirical measure μx(y) is
distributed in function space due to the fixed point distri-
bution x ∼ ρ(x)/〈Nfp〉 in Eq. (8). Thereby, we go beyond
the expected empirical measure derived in Appendix B. The
starting point is the scaled cumulant generating functional in
the saddle-point approximation given by Eq. (B13). Due to
its existence and differentiability, the Gärtner-Ellis theorem
holds [39], [[70], Sec. 5], stating that the empirical measure
fulfills a large deviation principle: The family of measures μ

converges to the expected measure μ∗ as N → ∞ in the sense
of distributions. According to the Gärtner-Ellis theorem, the
probability distribution functional of all empirical measures
at fixed points is of the form P[μ]

.= exp(−NH[μ]), and the
rate functional H[μ] is the Legendre transform of the scaled
cumulant generating functional.

Carrying out the Legendre transform (see the Supplemental
Material [[35], B2]), we find

H[μ] = DKL(μ‖ν) − WN [ jμ∗ ], (C1)
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where jμ∗ is the solution of μ(y) = μ∗[ j](y) and DKL

(ρ1‖ρ2) = 〈ln[ρ1(x)/ρ2(x)]〉ρ1(x) denotes the Kullback-
Leibler divergence between the probability distribution
functions ρ1 and ρ2. The reference function here is

ν(y) = e− y2

2(κ[μ]+D) +ζ [μ]+iμ̃∗[ jμ∗ ](y)

�∗
√

2π (κ[μ] + D)
. (C2)

The rate functional given by Eq. (C1) is convex and its min-
imum is the expected empirical measure given by Eq. (10);
deviations thereof are suppressed exponentially.

APPENDIX D: LARGE DEVIATIONS OF CONTRACTIONS

Quantities that can be derived from the empirical mea-
sure, such as the scaled squared norm of fixed points u[μ] =∫

dy y2μ(y) and the spectral radius of the the Jacobian at
fixed points R2[μ] = g2

∫
dy μ(y)φ′(y)2 are termed contrac-

tions in the context of large deviations theory. According to
the contraction principle [39], contractions inherit the large
deviations principle of the empirical measure.

1. Scaled squared norm

We start with the scaled squared norm. Specifically, the
contraction principle states that p(u)

.= exp[−NI (u)] and that
the rate function I (u) can be derived from the rate functional
for μ,

I (u) = inf
μ:

∫
y2μ(y) dy=u

H[μ], (D1)

repeating Eq. (12). The minimization can be carried out using
a Lagrange multiplier, and hence we have to optimize,

L[μ; λ] = H[μ] − λ

[
u −

∫
dy y2μ(y)

]
, (D2)

for both λ and μ. Writing H as the Legendre transform of W ,
H[μ] = inf j (iμT j − WN [ j]), one can carry out the optimiza-
tion over μ first,

δ

δμ(y)
[iμT j − λ(u − vTμ)]

!= 0, (D3)

which constrains the source term i j
!= λv. Since v(y) = y2 is

a fixed function, inf j → infλ. We have

I (u) = inf
λ

(λμT v − W [−iλv])|
vTμ

!=u

= inf
λ

(λu − WN [−iλv]), (D4)

where we were able to explicitly plug in the condition vTμ =
u. Thus, we have to solve

u = ∂

∂λ
WN [−iλv] = vTμ∗[−iλv]. (D5)

In practice, we solve this by computing μ∗[−iλv] in the same
way as we computed μ∗[0] in Appendix A for a sequence of
values λ. Then, we check which u they correspond to using
Eq. (D5). Lastly, we plug into Eq. (D4). I (u) is minimized at
the expected squared norm given by Eq. (11) and deviations
thereof are suppressed exponentially. The standard deviation
computed from Eq. (D4) is shown by the shaded area in
Fig. 1(d). The full (asymmetric) distribution is shown in the
Supplemental Material [[35], Fig. 3] for several parameters.

2. Spectral radius

The contraction principle and the method in Appendix D 1
can also be used to derive the distribution p(r)

.= e−NJ (r) of
the squared spectral radius r ≡ R2 with

J (r) = inf
μ:

∫
dy g2φ′(y)2μ(y)=r

H[μ]. (D6)

Specifically, one needs to compute μ∗[−iλw] for a sequence
of values λ, then solve r = wTμ∗[−iλw] for λ(r) and get the
rate function as J (r) = λ(r)r − WN [−iλ(r)w]. Equation (D6)
is minimized at the expected squared spectral radius, i.e.,
the square of Eq. (15), and deviations thereof are suppressed
exponentially. As detailed in the Supplemental Material
[[35], E2], Eq. (D6) captures the dominant finite-size smear-
ing of the spectral radius observable in Fig. 3(a).

APPENDIX E: TOPOLOGICAL COMPLEXITY

The topological complexity c is the rate by which the
expected number of fixed points grows with the number of
units, 〈Nfp〉 .= ecN . Reference [12] proposed the topological
complexity as a structural indicator of chaoticity, complemen-
tary to the maximum Lyapunov exponent which they refer to
as dynamical complexity.

To compute c, we start from the scaled cumulant gener-
ating functional given by Eq. (B13), where c appears as the

normalizing constant asserting WN [0]
!= 0. Thus,

c = −iμ̃T
∗μ∗ + ln �[μ∗, μ̃∗]. (E1)

Plugging Eqs. (B20), (10), and (B12) into Eq. (E1), we get
Eq. (13).
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