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Active membrane deformations of a minimal 
synthetic cell
 

Alfredo Sciortino    1,2,7, Hammad A. Faizi    3,7, Dmitry A. Fedosov    4,7, 
Layne Frechette    5, Petia M. Vlahovska    6, Gerhard Gompper    4   & 
Andreas R. Bausch    1,2 

Living cells can adapt their shape in response to their environment, a 
process driven by the interaction between their flexible membrane and 
the activity of the underlying cytoskeleton. However, the precise physical 
mechanisms of this coupling remain unclear. Here we show how cytoskeletal 
forces acting on a biomimetic membrane affect its deformations. Using a 
minimal cell model that consists of an active network of microtubules and 
molecular motors encapsulated inside lipid vesicles, we observe large shape 
fluctuations and travelling membrane deformations. Quantitative analysis 
of membrane and microtubule dynamics demonstrates how active forces 
set the temporal scale of vesicle fluctuations, giving rise to fluctuation 
spectra that differ in both their spatial and temporal decays from their 
counterparts in thermal equilibrium. Using simulations, we extend the 
classical framework of membrane fluctuations to active cytoskeleton-driven 
vesicles, demonstrating how correlated activity governs membrane 
dynamics and the roles of confinement, membrane material properties 
and cytoskeletal forces. Our findings provide a quantitative foundation for 
understanding the shape-morphing abilities of living cells.

Rather than being merely passive containers, cell membranes actively 
respond to and steer cellular activity, enabling a myriad of biologi-
cal functions such as cell crawling, cell division and cytoplasmic 
streaming1–8. Moreover, nucleus deformations can affect transcription9, 
and prebiotic membrane deformations might have influenced the 
origin of life10. To accomplish these activities, cells have the ability to 
dramatically change their shape, and many of these processes arise 
from a tight coupling between lipid membrane fluctuations (provid-
ing the necessary flexibility) and the underlying cytoskeleton, which 
provides the necessary active forces and directionality to induce 
deformations. The seminal discovery of ‘membrane flickering’ in red 
blood cells11,12 revealed how fluctuation analysis is essential to under-
stand membrane-driven processes both in vivo13–16 and in vitro17–19. 

One general result at equilibrium is that the temporal relaxation of 
membrane fluctuations is tightly bound to its spatial correlations20–23, 
enabling the extraction of mechanical properties from both spatial and 
temporal measurements of membrane dynamics. However, in cells, 
cytoskeletal activity modifies both spatial and temporal behaviours of 
membrane deformations13,14, potentially breaking their interdepend-
ence dictated by thermodynamics23–27. Hence, in living systems, it is 
challenging to simultaneously measure the dynamics of both mem-
brane and cytoskeleton imparting forces on it and to draw a precise 
link between cytoskeletal activity and its resulting fluctuations.

Giant unilamellar vesicles (GUVs) are a powerful tool to investi-
gate, in a controlled minimal system, how membrane deformations 
behave17,19,22 and how they are affected by activity28–35. However, despite 
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bundles hit the membrane, the forces exerted by the MT gel induce 
large shape deformations of the vesicle (Fig. 1b and Supplementary 
Video 1). The GUV continuously undergoes dramatic morphological 
changes, with a timescale of ~10 s, as extracted by the correlation 
function of membrane deformations (Supplementary Fig. 5c). Active 
deformations are clearly different in magnitude and dynamics from 
those present at equilibrium (Fig. 1c). They are observed for a wide 
range of concentrations of MTs, kinesin and anillin (Supplementary 
Fig. 1b). These enhanced deformations are tightly correlated with 
the organization of the MT network inside the GUV (Fig. 1d and Sup-
plementary Video 2). Since MTs do not assemble into a nematic layer, 
the deformations here are not localized to topological defects in the 
alignment of filaments37 but are a direct result of bundles exerting 
local forces on the membrane by their kinesin-induced extension. 
Moreover, vesicles never settle into a definite shape as observed in 
previous systems28,30,32, but rather continuously fluctuate around a 
spherical geometry.

Fluctuation spectroscopy reveals enhanced 
out-of-equilibrium fluctuations
More insights into the active membrane deformations can be gained by 
an analysis of the shape of the GUVs. First, we take long, high-frame-rate 
videos of the equatorial plane of a deforming GUV (30–4 frames per sec-
ond; Supplementary Video 3) and extract its contour R(ϕ, t) (Fig. 2a). 
From this, we compute the distribution of membrane deformations 
ΔR = R – R0, where R0 is the mean radius. Deformations are averaged 
over a variable duration τavg. We obtain large (~20%R0) deformations 
with a non-Gaussian distribution, especially for short τavg (Fig. 2b), 
indicating that the temporal behaviour of the active vesicles is dis-
tinct from the equilibrium counterpart (Fig. 2c), which instead shows 
smaller, Gaussian deformations. The difference is further validated by 

progress32,36–47, replicating cell-like shape deformations using a minimal 
system remains elusive. Here we address this issue by encapsulating a 
reconstituted cytoskeleton composed of an active microtubule (MT) 
network inside a deformable GUV, and analysing the resulting fluctua-
tions and shape deformations.

Vesicle shapes induced by active bundles
Our experimental cytoskeleton model consists of an active gel of MTs 
and molecular motors, similar to previously reported systems37,48–52, 
encapsulated inside GUVs using the continuous droplet interface 
crossing encapsulation (cDICE) technique53,54. Microscopically, the 
active system is composed of short (~1 μm), stabilized MTs (at concen-
tration cMT), kinesin tetramers (at concentration cK) and a crosslinker. 
Here, instead of the usual choice of having a depletant (such as poly-
ethylene glycol), as a crosslinker, we use the protein anillin (at concen-
tration cA), which induces filament–filament interactions leading to 
the formation of MT bundles (Supplementary Fig. 1a). Because of the 
additional activity of molecular motors acting on filaments, bundles 
extend and buckle due to kinesin-induced stresses (Fig. 1a), continu-
ously breaking and aggregating, as long as adenosine triphosphate 
(ATP) is available (for 1 h, under our conditions). Using crosslinkers 
instead of depletants, and keeping the MT concentration in a dilute 
regime, we ensure that the bundles are not effectively attracted to the 
membrane (as they would in the presence of a depletion interaction) 
and are not dense enough to form a nematic material55. The net result 
is a minimal active cytoskeleton, which self-organizes into a loosely 
connected, isotropic three-dimensional network of long (~100 μm) 
extensile bundles. When encapsulated inside GUVs (mean radius, 
R0 ≈ 25 μm), this active MT network assembles inside the whole vesicle 
volume, in stark contrast to previous systems consisting of a dense 
two-dimensional nematic layer on the membrane37. Yet, when active 
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Fig. 1 | GUVs containing a minimal cytoskeleton exhibit large shape 
fluctuations. a, Confocal snapshot of the active MT network in unconfined 
conditions. Short fluorescently labelled MTs, in the presence of crosslinkers, self-
organize into extensile active bundles, propelled by kinesin motors (right). Scale 
bar, 100 μm. This experiment was repeated twice. Top right: enlargement of the 
extensile bundles. A circle having a size comparable with the GUVs we produce 
(R0 ≈ 25 μm) is superimposed in red for reference. Scale bar, 50 μm. Bottom right: 
schematic of the encapsulated experimental system. Inside the GUV (red circle), 

small MTs of opposite polarities assemble into bundles that are extended (see 
arrows) by kinesin motors (in yellow). This results in active extensile bundles 
confined inside the GUV. b, Confocal projections of a GUV (membrane in red) 
containing an active MT network (MTs are shown in white). The GUV deforms  
and changes shape with a timescale of the order of several (~10) seconds.  
Scale bar, 20 μm. c, A passive vesicle fluctuating with the same time interval 
between frames as a reference. Scale bar, 20 μm. d, Artistic depiction of shape-
morphing GUVs resulting from the encapsulation of active bundles.
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an analysis of the distributions’ kurtosis as τavg is varied, indicating that 
active GUVs at short times (τavg ≈ 2 s) show variations from a Gaussian 
distribution due to activity. At long averaging times instead (τavg ≈ 10 s), 
active deformations also approach bell-shaped distributions, although 
with a larger variance (Fig. 2d).

To gain further insights into the spatiotemporal dynamics of active 
GUVs, we resort to flicker spectroscopy. The contour is decomposed 
into Fourier modes, with mode number q (Fig. 2e and Supplementary 
Section 2) as

R(ϕ, t) = R0 (1 +
qmax

∑
q

uq(t)eiqϕ) , (1)

where qmax ≈ 15 is fixed by the image resolution. Each coefficient uq rep-
resents the magnitude of equatorial deformations of wavelength ~R/q.

For passive vesicles with bending rigidity κ and tension σ, the 
power spectrum of the Fourier coefficients uq is expected to scale as

⟨|uq|2⟩ ≈
kBT
κ

1
q3 + ̄σq , (2)

where kBT is the thermal energy and ̄σ = σR2
0/κ  is the normalized ten-

sion. Note that this equation for the equatorial fluctuations of a GUV 
is the equivalent of the classical Canham–Helfrich expression but for 
a quasi-spherical membrane on an equatorially intersecting plane17,20,21. 
For passive vesicles, we recover the classical regimes of bending ( ̄σ ≪ 1
; Fig. 2f, purple) and tension-dominated fluctuations ( ̄σ ≫ 1; Supple-
mentary Fig. 2a). From these data, for passive GUVs made of egg phos-
phatidylcholine, we extract the bending rigidity of κpass = (13.4 ± 2.5) kBT 
(mean + s.d., n = 5). This value is consistent with those in the 
literature34,56, confirming that the cDICE approach to prepare GUVs 
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Fig. 2 | Membrane deformations of active vesicles are out of equilibrium. a, To 
analyse deformations, the equatorial contour of a fluctuating vesicle is tracked to 
obtain its description in polar coordinates R(ϕ, t). The extracted contour is 
marked by orange dots and then shown as a (ϕ, R) plot (bottom). The dashed line 
is a guide for the eye. Scale bar, 25 μm. b,c, Histograms of the distribution of 
radial deformations P(ΔR) for an active GUV (b), compared with a passive one (c), 
normalized by the mean radius R0. The contours are sampled for different times 
(τavg = 2 s, 5 s and 10 s) from the videos of GUVs. Active deformations have peculiar 
distributions at short timescales, indicating correlated dynamics. Passive GUVs 
exhibit a Gaussian-like distribution at all timescales, as expected from thermal 
noise. d, Excess kurtosis of the distribution of radial deformations as a function 
of sampling time τavg for an active (red) and a passive (blue) GUV. The circles 
indicate the mean, the shaded area indicates the s.d. and the dashed lines indicate 
the minimum/maximum kurtosis. Data are generated by extracting frames from 
recordings of a given duration τavg and computing the kurtosis of the distribution 
of radial deformations. At a short timescale, the difference in spread between 
active and passive is noticeable. e, Schematic of the decomposition of the 

contour into a sum of Fourier modes, labelled with q, whose fluctuations can then 
be separately analysed. f, Fluctuation spectrum for the Fourier coefficients uq as a 
function of Fourier mode q for a passive (purple) and an active (red) GUV. 
Fluctuations of the active GUV are higher in magnitude and decay with a scaling 
exponent of ~3. The dashed line indicates a q−3 scaling and the solid black line, a  
q−1 scaling. Data are shown as mean ± standard error of the mean, derived from 
the precision of the contour detection based on the optical resolution of the 
camera. The error bars are smaller than the symbols. g, Correlation time τq at each 
mode q for a passive (purple) and an active (red) vesicle, as obtained from the 
correlation functions ⟨u∗q(t)uq(0)⟩. Although the passive vesicle exhibits the 
expected q−3 scaling (dashed line), the active one has a different one (solid line 
indicates q−1). h, Histogram of the flux between mode Ω showing broken detailed 
balance between pairs of different modes, a signature of the out-of-equilibrium 
activity. The dashed blue line shows an example from a passive vesicle showing 
no net flux. For each dataset, we compute the z score as the mean divided by the 
s.d. (Supplementary Section 2.4), indicating how far the mean is from Ω = 0. One 
example in that even in the active case, there is no net flux (red dashed line).
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does not affect their mechanical properties. Additionally, from vesicles 
in the tension-dominated regime (selected by their radius R0, which 
tunes the crossover mode ̄σ) and, hence, showing a clearer ~q−1 low-q 
decay, we also extract a passive membrane tension of σ ≈ 10−7 N m–1, to 
be considered as an estimate because tension will be different for each 
GUV and depend on their reduced volume. The spectra of passive 
vesicles encapsulating MT networks in the absence of ATP, or in the 
absence of motors and crosslinkers, resemble those observed for bare 
vesicles (Supplementary Fig. 2b).

By contrast, actively deforming GUVs exhibit fluctuations that are 
roughly one order of magnitude above the passive reference (Fig. 2f, 
red) at all mode numbers. From now on, all the spectra refer to the same 
vesicle with cMT = 0.8 mg ml–1 MTs, cA = 1.5 μM and cK = 120 nM (further 
examples showing the effect of parameters variation are shown in 
Supplementary Fig. 2c and the reproducibility details are given in the 
Methods). The fluctuation spectra of the active GUVs decay over q 
similar to the observed passive bending-dominated case: 〈∣uq∣2〉 ≈ q−3. 
The increase in magnitude indicates that in the presence of activity, 
thermal excitation of the bending modes of the vesicle is negligible 
compared with the deformations driven by active forces28,29,57. The 
increase at a high mode number is in part due to the formation of 
transient tethers, which, however, are rare with respect to the overall 
smoother deformation.

We then turn to the temporal behaviour of deformations. The time 
correlation function ⟨uq(τ)u∗q(0)⟩ of a purely passive GUV is expected 
to decay as an exponential17 with a decay time τq, which, in turn, scales 
exactly like the spatial spectrum, as τq ≈ (q3 + ̄σq)−1 (Fig. 2g). For active 
GUVs, however, we observe a τq ≈ 1/q scaling at low modes, which does 
not match the scaling of spatial fluctuations. This indicates that the 
activity strongly affects the timescales of membrane fluctuations and, 
thus, defies the relationship between fluctuations and response 
expected at equilibrium, imposing the same scaling between spatial 
fluctuations and their temporal decay. Indeed, using previously estab-
lished methods58,59, we confirm that membrane fluctuations break 
detailed balance. Briefly, using the amplitude of Fourier modes as a 
proxy for the microscopic configuration of GUVs, we find the presence 
of net probability fluxes Ω in the transitions between different modes, 
which would be expected to vanish at equilibrium due to the detailed 
balance. Intriguingly, a statistically significant net flux is only present 
between some couples of modes, indicating that the active force cou-
ples preferentially with deformations of specific wavelengths (Fig. 2h 
and Supplementary Fig. 4). This confirms that the membrane is out of 
equilibrium and that its temporal dynamics can be informative about 
the microscopic details of activity-induced deformations.

MTs set the correlation time of membrane 
fluctuations
Since the membrane fluctuations are induced by the contained mini-
mal cytoskeleton, we then focus on the properties of MTs inside the 
GUV, taking advantage of our ability to image them at the same time 
as the membrane.

With the bundle length (~100 μm) comparable with the GUV diam-
eter (~50 μm), the active network affects the membrane fluctuations, 
whereas, in turn, the MT organization is altered by the confinement of 
the membrane. This membrane–cytoskeleton interaction leads to a 
complex, three-dimensional organization of the bundles (Fig. 3a and Sup-
plementary Video 4). To better show their organization, we tracked bun-
dles using the filament-tracking software SOAX60 and show that indeed 
different from previous systems encapsulating active MTs37, bundles are 
neither confined on the surface nor do they cover it completely (Fig. 3b).

We identify two main ways in which MTs can push against the 
membrane. When they extend and push radially against the membrane, 
they lead to transient, tube-like protrusions (‘poking’ behaviour; Fig. 3c 
(top) and Supplementary Video 5). Such tubes are transient and retract. 
Instead, when the bundles approach the membrane tangentially, they 

produce long-wavelength deformations, due to bundles buckling 
against the membrane (‘buckling’ behaviour; Fig. 3c (bottom) and 
Supplementary Video 6). In both cases, membrane deformations are 
closely correlated with the local activity of the MT network.

On the basis of these observations, we postulate that the temporal 
correlation of membrane deformations is connected to the dynamics 
of the MT bundles and under the assumption that the activity of fila-
ments is proportional to their number, irrespective of their orientation, 
we propose to use the local MT density as a proxy for the force they 
exert. This assumption might be invalid if the filaments push radially 
and, hence, more effectively; however, we confirm that buckling is the 
main deformation mode by showing that the bundle orientation ̂n, 
extracted using SOAX, is tangential to the membrane when r ≈ R0 
(Fig. 3d). From fluorescence videos, we then extract the intensity of 
MTs ρ(r, ϕ, t), where r is the distance from the centre of the GUV. We 
confirm again that filaments can be found in the GUV volume, but fila-
ments are still more concentrated along the membrane surface due to 
their extensile behaviour; the radial density of MTs peaks at r ≈ R0 
(Fig. 3e).

Shape changes in the membrane are, hence, driven by the local 
organization and activity of the MTs, which directly push against the 
membrane and deform it. We can capture the relevant dynamics of fila-
ments and their interplay with the membrane by reducing our observ-
able to an angular density of MTs ρ(ϕ, t) ≔ ρ(r ≈ R0, ϕ, t) computed only 
in the vicinity of the membrane (Fig. 3f). By directly correlating the 
membrane deformations with the local MT density, we confirm that 
filaments are also highly concentrated in places where membrane 
deformations are larger than average (Fig. 3g–h). We then turn to the 
dynamics of MTs. By tracking the flow of MTs along the membrane 
(Supplementary Fig. 8a,b), we observed that clusters of highly con-
centrated MTs travel along the membrane with a speed of v ≈ 1 μm s–1 
(Fig. 4a and Supplementary Videos 7 and 8), transporting with them 
the membrane deformations they induce (Fig. 4b). This gives rise to 
transient deformation waves that travel, merge or split (Fig. 4c and 
Supplementary Video 4), and then switch direction or dissolve after 
around 10 s. These transient waves are due to the tendency of the MT 
bundles to extend, thereby deforming the membrane. Collision with 
the membrane deflects the motion of MTs, thereby turning extensile 
activity into motion along the membrane. On average, the component 
of the velocity in the direction tangential to the membrane (vT) accounts 
for vT/v ≈ 80% of the total speed (Supplementary Fig. 8c). It follows that 
the dynamics of the membrane is due to MTs deforming it due to their 
extensile-based pushing and then moving along the GUV perimeter 
due to confinement. Consequently, they transport these deformations 
along the membrane, as confirmed by the correlation between radial 
deformations, MT density along the membrane and their tangential 
speed that propagates the deformations (Fig. 4d(i)–d(iii)).

To quantitatively understand the link between MTs and mem-
brane fluctuations, we used again a Fourier series expansion of the MT 
density ρ(ϕ, t). The method mirrors the spectral analysis of membrane, 
being now focused on the active MT network pushing on the mem-
brane. Briefly, we computed both density fluctuation spectrum 〈∣ρq∣2〉 
and its temporal decay for each mode. The fluctuation spectrum 
(Fig. 4e, blue) is distinct from that of the membrane. This aligns with 
what we see for an unconfined MT active gel (Supplementary Fig. 7, 
grey). This suggests that the angular filament density within GUVs is 
arranged similar to its distribution in bulk. This specific spatial 
arrangement of MTs, however, when acting on the membrane—
although scaling differently than equatorial fluctuations—does influ-
ence them, resulting in the observed q-dependent decay of membrane 
fluctuations. In particular, conversely, the MT density also exhibits 
q-dependent decay times τMT

q , which are consistent in both magnitude 
and scaling with the decay times observed for membrane fluctuations 
(τMT

q ≈ τq). This parallelism suggests that the active MT fluid deter-
mines the membrane fluctuation timescale (Fig. 4f and Supplementary 
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Figs. 5 and 6). This elucidates the observed separation between the 
membrane’s spatial and temporal correlations, the latter being now 
solely set by the active MT network.

Moreover, again examining a similar MT system in bulk under 
identical conditions, we found a similar scaling of the correlation times 
but with faster decay times (around ten times shorter than inside GUVs). 
This indicates that the confinement induced by the GUV slows down the 
system dynamics (Fig. 4f, grey). Hence, soft confinement, although not 
modifying its angular distribution, extends the MT density’s correlation 

timescale. We attribute this effect to the membrane acting as a barrier, 
which redirects any radial flow of the network tangentially, thereby 
prolonging its temporal persistence.

Theoretical coarse-grained model recapitulates 
the observed dynamics
To better understand the behaviour of the temporal and spatial fluc-
tuations of active GUVs, we resort to the numerical simulations of a 
simplified model that nevertheless captures all the key characteristics 
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Fig. 3 | MTs act on the membrane to induce shape deformations. a, Confocal 
projection of the active MT network, showing how its structure is correlated with 
the GUV shape. Scale bar, 20 μm. Similar results have been obtained for GUVs in 
similar conditions (Methods). b, Tracking of MT bundles inside a GUV using 
SOAX, from 20 overlaid frames of a confocal recording. The GUV surface is filled 
with MT bundles (left), but bundles can also be present in unconfined conditions, 
as shown by a 5-μm-thick slice of the equatorial plane seen from the top (right). 
Only select bundles are shown, each with a different colour. The dashed line (left) 
indicates the equatorial plane selected on the right, and the dashed line (right) 
indicates the average GUV equatorial contour. c, Confocal time series, showing 
how MTs deform the GUV. Bundles can poke the membrane (top), leading to the 
formation of tubes, or they can (bottom) buckle against the membrane, inducing 
smoother shape deformations. MTs are marked in white and the membrane, in 
red. Scale bars, 5 μm. d, Close to the surface, MTs are mostly tangential to the 
membrane, as indicated by the small value of the dot product between the bundle 
orientation ( ̂n) and radial vector ( ̂r). The shaded area indicates the s.d. between 
n = 5 different GUVs analysed, from N = 2 experiments in the same conditions.  

e, Radial intensity profile of the MT density ρ(r), showing accumulation close to 
the membrane. The dashed line indicates the mean radius of the GUV over time. 
The shaded area indicates the s.d. between n = 5 different GUVs analysed, from 
N = 2 experiments in the same conditions. f, MT intensity ρ(ϕ, t) is obtained by 
averaging the MT fluorescence intensity in a box (coloured in yellow) centred at 
the membrane position R(ϕ, t) and with size dR = 5 μm (indicated by the white 
dashed line) to obtain the angular distribution of MTs along the membrane (not 
to scale in the picture). The angle ϕ is computed using the orange line as a 
reference (ϕ = 0). Scale bar, 20 μm. g, Plot of the MT density ρ (blue) and the local 
deformation ΔR (red) along the membrane, showing correlations between the 
two. A higher density leads to a higher deformation. h, Scatter plot of the 
correlation between the density and deformations along the whole trajectory of 
a GUV. Deformations are normalized by the mean radius R0 of the GUV. We find a 
Pearson correlation coefficient of 0.6, computed using Python’s numpy.corrcoef 
function. The shaded area indicates the s.d. between n = 5 different GUVs 
analysed, from N = 2 experiments in the same conditions.
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of the experimental system. We implement a fluid membrane model 
based on dynamically triangulated surfaces61,62, consisting of a mesh of 
membrane points connected by bonds. The vesicle membrane has a 
diameter D = 40 μm, area and volume conservation are enforced (Sup-
plementary Section 3), and we set the membrane bending rigidity and 
tension to κ = 20kBT and σ = 10−8 N m–1, respectively. Membrane hydro-
dynamics is ignored for simplicity, but this does not significantly affect 
the results (Supplementary Fig. 10e). The active cytoskeleton is imple-
mented by a set of Nfil = 20 filaments placed inside the vesicle. Filaments 
have a relaxed length L = D/2 and can grow and extend for a typical time 
Tstr to reach a maximum length Lmax = 2D, before shrinking back. This 
growth dynamics simulates the extensile behaviour of MT bundles and 
their ability to buckle, whereas the shrinking simulates bundles break-
ing and/or leaving the membrane. Bundle activity leads to membrane 
deformations analogous to the experimentally observed ones (Sup-
plementary Video 9 and Fig. 5a,b). Kymographs of the membrane defor-
mations for different values of Tstr show the ‘wave-like’ behaviour 

observed in experiments if Tstr is high enough, indicating that filaments 
transport deformations in space by extending along the membrane. 
Conversely, for low Tstr, membrane deformations are only local and, as 
the filaments shrink, quickly relax with their passive decay time (Fig. 5b). 
We find good agreement between the simulated vesicles and the exper-
imental measurements, both for passive and active GUVs and in both 
spatial and temporal decays of fluctuations (Fig. 5c). The simulated 
fluctuation spectrum is indeed roughly one order of magnitude higher 
than the passive reference and scales indicatively as ~q−3 (Fig. 5c, top), 
whereas the relaxation time of the membrane deviates from the equi-
librium behaviour and shows a q−1 decay (Fig. 5c, bottom), in accordance 
with the experimental findings. We postulated that this behaviour of 
active vesicles arises whenever activity dominates the membrane 
dynamics, that is, if Tstr > τPq, where τPq is the passive relaxation time of 
the membrane. Indeed, if Tstr ≪ τPq, the temporal relaxation is marginally 
affected, whereas for Tstr ≫ τPq, the membrane relaxation is fully driven 
by activity, exhibiting the peculiar q−1 scaling and overall increasing 
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Fig. 4 | Dynamics of MTs sets the dynamics of membrane deformations.  
a, Arrows indicate the tangential component of the speed of MTs in the vicinity 
of the membrane at four different snapshots of a 6-min recording. The flow goes 
both clockwise (CW; red) and counterclockwise (CCW; blue), and is organized in 
domains of similar flow (transient waves) that move, collide and rearrange over 
time. The arrow colour only indicates the CW/CCW direction. Scale bar, 20 μm. 
b, By visualizing the vesicle using confocal images projected in the (r, ϕ) plane, 
where r is the distance from the GUV centre, one can see MT-driven membrane 
deformations that travel along the membrane, transported by the active flow 
(indicated by arrows). c, Kymographs of the membrane deformations R(ϕ, t) 
showing areas of high deformations propagating in time and merging (left) or 
splitting (right). The arrows indicate the direction of motion. d, Kymograph 
of membrane deformations (i), MT density (ii) and tangential flow along the 

membrane (iii), showing high correlation and indicating how flow transports 
the MT density, which, in turn, induces the membrane deformations. e, Spatial 
fluctuation spectrum for the MT density ρ(ϕ) both under GUV confinement but 
close to the membrane (full blue circles) and in unconfined conditions (open 
grey circles). Both spectra are normalized so that they have a value of 1 at q = 2. 
The two quantities show a similar decay. As shown in Fig. 2g, the dashed line 
indicates a q−3 scaling and the solid black line, a q−1 scaling. f, Correlation times 
τq of deformations at each mode q for the membrane (red) compared with those 
extracted from the spectral description of the MT density ρ(ϕ, t) (blue). The two 
curves are comparable with each other and display the same scaling. The same 
spectral analysis, performed on the unconfined system, shows a similar scaling 
but faster decorrelation. The solid black line shows a q−1 scaling.
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Fig. 5 | Simulations recover and extend the experimental results. a, Snapshot of 
numerical simulations, carried out for Tstr = 10.2 s. Extensile filaments (white) are 
shown inside a simulated membrane (red) and deform it. b, Kymographs of 
equatorial membrane deformations (R is the distance from the GUV centre at a 
given angle ϕ) at different values of extension time Tstr, normalized by the mean 
radius R0. c, Top: spatial fluctuation spectrum of passive (purple) and active (red) 
membranes, from experiments (full circles) and simulations (empty squares; 
extension time, Tstr = 10.2 s for the active case) showing similar scaling and 
magnitude. c, Bottom: simulated (empty circles) and experimental (full 
triangles) correlation times τq for each mode q for the active case, in the same 
conditions. In this and the subsequent plots, a dashed black line indicates an  
~q−3 scaling and a solid black line, an ~q−1 one. The error estimate (mean ± s.d.) for 
simulations is explained in the Methods. d, Simulated spatial fluctuations at 
different values of Tstr, with passive reference in black, showing that the temporal 
dynamics of the force does not significantly affect the active spectrum. Error 

estimate (mean ± s.d.) for simulations is explained in the Methods. In c and d, the 
experimental and simulation errors are computed as explained in the Methods.  
e, Simulated temporal fluctuations of the membrane (τq; circles) and of the active 
force (τaq; triangles) at different values of Tstr, with the passive reference (τPq) 
shown in black. Both force and membrane show the observed q−1 decay.  
f, Simulated tension σact and mean force acting on the membrane at different 
values of Tstr, showing a limited increase in both quantities. Mean ± s.d. are shown. 
g, Temporal fluctuations of the membrane at different values of κ with the passive 
reference, showing how rigidity affects only the low-q modes h, Simulated 
temporal fluctuations of the force (τaq) at different values of κ, with the passive 
reference shown in black. The bending rigidity κ does not significantly alter the 
temporal properties of the active force. i, Crossover mode at which the active 
temporal fluctuations stop scaling as q−1 as a function of κ. The dotted line 
indicates the scaling with the bending rigidity as k−1/4, compatible with the energy 
cost of bending a membrane.
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correlation time as Tstr grows (Fig. 5e, circles). By measuring the correla-
tion time at each mode of the active force τaq (Supplementary Section 
2), we again show that the ~q−1 decay of the membrane correlation times 
is imposed by the temporal activity of the force (Fig. 5e, triangles). Inter-
estingly, we observe this temporal scaling for different values of Nfil, 
Lmax/D and the vesicle’s reduced volume (Supplementary Fig. 10). By 
contrast, the behaviour of the fluctuation spectrum is only mildly 
affected by all of the above parameters, indicating that the temporal 
behaviour of the membrane fluctuations, rather than its spatial coun-
terpart, might be a better readout of the effect of activity. We then looked 
at a possible explanation for this behaviour. As ~q−1 decays are commonly 
associated with tension, we wondered whether the observed scaling 
could be explained in terms of an effective active tension σact by pushing 
forces14,22. We found that as Tstr increases, the total tension indeed rises. 
At the same time, the mean active force acting on the membrane also 
increases (Fig. 5f). However, the effect is small, with only a moderate 
increase in tension due to the active force. We then tested the effect of 
membrane rigidity κ. As κ increases from 10kBT to 160kBT at fixed 
Tstr = 10.2 s, the same ~q−1 scaling is observed, but only at lower modes, 
indicating an interplay between membrane mechanical properties and 
the active force (Fig. 5g). This effect, in which the membrane and the 
active force synchronize only at low modes, is not dependent on a change 
in the temporal correlation of the force, which is not modified by the 
bending rigidity (Fig. 5h) but depends only on the mechanical properties 
of the membrane. Indeed, the crossover mode at which the ~q−1 behav-
iour stops scales as ~κ−1/4, that is, the highest excitable mode is the one 
at which the force becomes comparable with the cost of bending defor-
mations ~κq4 (Fig. 5i). Hence, an additional condition for the synchro-
nization to happen is that the force is stronger than the membrane’s 
deformation cost. We conclude that this behaviour is universal, as we 
consistently observed an ~q−1 scaling in the membrane’s temporal relax-
ation as soon as activity dominates. The tight correlation between mem-
brane deformation and force is confirmed in simulations, indicating 
that the behaviour of the membrane follows the behaviour of the fila-
ments in the temporal domain. The observed fluctuations in the mem-
brane and MT dynamics, hence, reflect a feedback in which soft 
confinement modifies the temporal MT organization, which, in turn, 
dictates large membrane fluctuations around the equilibrium spherical 
shape. The resulting activity of the MT network acting on the membrane 
is correlated in time and drives the dynamics of membrane fluctuations 
accordingly, as can be rationalized by the fact that the correlation func-
tion of a membrane under the effect of active correlated noise tends to 
synchronize with the slower timescale13,14,24, which is the active one here. 
Measuring both quantities directly allows to clearly prove it.

In summary, deformation dynamics are regulated by active forces, 
with temporal fluctuations better capturing out-of-equilibrium sig-
natures than spatial ones13,14,24,26,27 and, hence, being a more direct 
observable of activity in living systems. Membrane deformations also 
allow to extract the typical time and force of the active system. Our 
system relies on a simplified cell and cytoskeleton model, whereas in 
cells, membrane deformations are rather a consequence of actin turno-
ver dynamics. However, experiments recover typical timescales and 
mechanical properties of living cells. Additionally, GUVs also represent 
a model for protocells; hence, similar active fluctuations might shed 
light on early organizations of biomembranes. Although extreme, the 
deformations we observe do not lead to any transition from a spherical 
topology, which would be possible by including area growth, bringing 
it closer to origin-of-life conditions reported elsewhere10. Overall, 
understanding this dynamics is, therefore, a fundamental step in the 
programs of understanding biomembrane deformations and of recon-
stituting a realistic synthetic cell.
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Methods
Buffers and proteins
M2B is 80 mM PIPES (pH 6.8), 2 mM MgCl2 and 1 mM EGTA. 3.2 mM 
MgCl2 is added at the end from a 67 stock already diluted in M2B.

Lipids (Texas Red DHPE and DOPC, Avanti Polar Lipids) are 
bought from Thermo Fisher. Anillin is purified in the laboratory from 
its sequence (Supplementary Section 1). Silicon and mineral oil are 
purchased from Sigma.

Encapsulation using cDICE
Vesicles are produced using the cDICE method38,53,54 consisting briefly of 
letting droplets of the active mixture cross a layer of oil (silicon and min-
eral oil; Sigma) containing lipids, to coat them with a membrane. The 
droplets are produced by inserting a capillary in a three-dimensionally 
printed rotating chamber38. Finally, the vesicles accumulate in a buff-
ered aqueous solution, whose osmolarity is matched to 20 mOsm kg–1 
higher than the active mix using glucose. The mixture is prepared as 
follows: the desired concentration of stabilized MTs is mixed in M2B 
together with the desired concentration of kinesins, anillin and 2 mM 
ATP. The mixture also contains a scavenging system (10 U ml–1 glucose 
oxidase and 1 kU ml–1 catalase; Sigma), glucose (3 mg ml–1), an ATP 
regeneration system (18.2 U ml–1 of creatine phosphokinase and 9 mM 
of creatine phosphate; Sigma) and 5 mM dithiothreitol. It is ensured 
that the final concentration of salts is exactly the one expected for M2B 
by correcting using a 10× M2B preparation. The stock of MTs and the 
mixture are kept at room temperature to avoid depolymerization. After 
mixing, we wait for 5 min for the active fluid to assemble. Its osmotic 
pressure is measured using a Gondotec osmometer, and a buffered 
solution, containing glucose, with comparable osmotic pressure is 
also prepared. Finally, the cDICE encapsulation is carried out at room 
temperature. We use a capillary with a diameter of 40 μm to allow for 
big vesicles and fast encapsulation (5 min). The vesicles are then har-
vested, transferred to a glass coverslip coated with 1 mg ml–1 bovine 
serum albumin (Sigma) and observed under a microscope.

Imaging
Vesicles are acquired using a confocal microscope (Leica DMi5, 
×63 objective, 1.4 numerical aperture; LAS X, acquisition software) 
equipped with a resonant scanner. Long time series of the equatorial 
plane are acquired using a 256 × 256 image size with a time interval of 
35–250 ms (around 4,000 frames, for a total recording time of 5–10 min 
per GUV). The pinhole was set to 1 Airy unit. Both membrane and MT 
channel are acquired at the same time. Three-dimensional stacks are 
also acquired at different resolutions and time intervals.

Extraction of GUV contour and MT density
The images of the membrane channel are thresholded and the GUV 
contour is obtained using custom-written Python 3, MATLAB (version 
R2024) and Mathematica codes. Briefly, using the centre of the GUV as 
a reference, the space is divided in overlapping angular segments of 
amplitude da = 0.25 rad and separated by dϕ = 0.15, inside which the 
radial position of the point with the maximum intensity of the mem-
brane is found, thereby obtaining a discretization of R(ϕ). The same 
logic is applied to the MT intensity to obtain ρ(ϕ, r), which can then 
be averaged inside a box of width da and contained between R(ϕ) and 
R(ϕ) – dR with dR = 5 μm to obtain ρ(ϕ) in proximity of the membrane.

Kurtosis analysis
The extracted contours are split in a series of lengths τavg; from each series, 
the histogram of the deformations (R – R0)/R0 (where R0 is the mean radius 
of the GUV over time) is extracted. The kurtosis for each resulting distri-
bution is then computed and normalized so that the expected value for a 
Gaussian is 0 (excess kurtosis). For each value of τavg, we then obtain a list 
of kurtosis collected and from which their average, standard deviation 
(s.d.), and minimum and maximum values are computed.

Fluctuation spectra and decay times
The discretized version of R(ϕ) and ρ(ϕ) are, at each time point, 
expanded in a Fourier series to obtain the complex coefficients uq(t). 
For this, we compute the integrals aq(t) = (1/π)∫R(ϕ, t)sin(qϕ)dϕ and 
bq(t) = (1/π)∫R(ϕ, t)cos(qϕ)dϕ, using the trapezoidal rule. From this, we 
obtain uq(t) = (–aq(t), bq(t)). Alternatively, R(ϕ, t) is Fourier transformed 
with a fast Fourier transform to obtain the complex coefficients uq(t), 
appropriately scaled to match the mode number q. The variance of uq(t) 
yields the spatial spectrum, whereas its correlation function is used to 
extract the decay times. The decay time is defined as the time at which 
the correlation decreases below 1/e of the initial value to compare 
decays that are not strictly speaking exponentials.

Statistics and reproducibility
Given the complexity and the large variation between vesicles, data are 
not pooled together, and only one GUV is shown in the text. The error 
bars on the individual spectra are obtained using the standard error 
of the mean from contour detection, based on the optical resolution 
of the camera. Other GUVs in the same conditions shown in the main 
text are discussed in Supplementary Figs. 2 and 3, including data on the 
GUV-to-GUV and day-to-day reproducibility of the experiment. Vesicles in 
different conditions are shown in Supplementary Fig. 1. Qualitatively, all 
the observed GUVs show the same trends, that is, an enhanced fluctuation 
spectrum and a synchronization between membrane and MT density in 
time. GUVs containing the active fluid but not showing active behaviour 
were excluded from the analysis and attributed to a faulty encapsulation 
process. No randomization or blinding was used. Errors in the simulation 
are computed as the mean ± s.d. of the quantities over 16,500 snapshots.

Broken detailed balance
We extract the microscopic configurations of GUVs by decomposing 
their contours into different Fourier modes. The resulting (discretized) 
Fourier coefficients act as a proxy for a given configuration, and the 
probability of a given configuration is defined as the ratio of the time 
spent with a given set of Fourier coefficients over the toal time of the 
acquisition. The currents across the box boundaries determined by 
counting statistics, that is, the transitions between boxes yields the the 
probability current j. A non-zero value of its contour integral Ω = ∮C j⋅dl

∮C | j|dl
 

indicates a system out of equilibrium, where C is a cycle. The flux is 
normalized and, hence, dimensionless. More details about this method 
are provided elsewhere58,59. The z score of each flux is obtained by col-
lecting all the values of Ω across different cycles, taking their average 
and checking how many s.d. values away from Ω = 0 it is.

Bundle tracking
Bundles are tracked using SOAX60 based on active contours. Confocal 
stacks of active GUVs are analysed, and the bundle contour segmented 
in positions ri is extracted and plotted in three dimensions. Their local 
orientation is given by ni = r(i + 1) – ri, enabling to find their alignment 
with respect to the radial direction. As ni and –ni are equivalent, the 
alignment is chosen to have a positive radial component.

Analysis of MT flow
To extract the flow of MTs inside GUVs, the videos of the MT channel at 
the equatorial plane are analysed using an optical flow algorithm using 
a custom Python 3 script. Roughly, the intensity is followed over time 
extracting its flow, and then, the flow close to the membrane (using the 
procedure detailed above for the MT density) is averaged over 1 s and 
decomposed into tangential and radial components by a scalar product 
with a unit vector starting from the centre of the GUV and extending 
radially and its normal counterpart (tangential).

Bulk experiments
To perform bulk (unconfined) experiments, the same mixture is 
injected inside a 10-μl microscopy chamber composed of a glass slide 
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and a coverslip separated by a layer of parafilm. The slides and cover-
slips are passivated using polyacrylamide52. The Fourier analysis of the 
unconfined fluid is detailed in Supplementary Section 2.6.

Coarse-grained modelling
In simulations, the membrane is modelled as a two-dimensional 
dynamically triangulated network, in which bonds between neighbour-
ing vertices can be cut, flipped and reattached to mimic the internal 
reorganization of a fluid lipid bilayer. The extensile MT bundles are 
described by linear bead-spring chains with bending rigidity. The 
extension/retraction is described by a linear temporal growth of the 
bond lengths. The interaction of the filaments with the membrane is 
taken to be purely repulsive. Details and parameters are given in Sup-
plementary Section 3.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All raw data used in the Article are available via Zenodo (https://doi.org/ 
10.5281/zenodo.11351857)63, which includes source data for the images 
and plots in the main text.

Code availability
Scripts used for the analysis of the data are available via Zenodo (https://
doi.org/10.5281/zenodo.11351857)63. The membrane model used for 
simulating the membrane is available from the corresponding author 
G.G. upon reasonable request.
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