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A B S T R A C T

The use of renewable energy sources, such as wind power and photovoltaics is expected to produce fluctuating 

electricity prices. These fluctuations give PEM electrolyzers the opportunity to reduce costs, as they can adapt 

their production rates rapidly. Moreover, typically slow temperature dynamics of electrolyzers increase their flex-

ibility for effective operational management strategies. With a defined temperature trajectory during scheduling 

optimization, overload operation of the electrolyzer for a given amount of time is possible. However, the tem-

perature dynamics are typically nonlinear. In conjunction with discrete on/off decisions, temperature dynamics 

lead to mixed-integer nonlinear optimization problems for scheduling that are highly challenging to solve in 

real time. In this study, we experimentally validate the dynamic ramping scheduling optimization method that 

precisely linearizes nonlinear temperature dynamics using a flatness-based coordinate transformation. Utilizing 

the available information from the dynamic scheduling optimization a 100 kW PEM electrolyzer was operated 

by studying three stack temperature control methods, rejecting disturbances from load variations. Identifying a 

suitable control method was essential to guarantee the desired temperature tracking performance of the opti-

mization. Our experiments show a 3.8 % cost reduction compared to the benchmark without overload operation. 

The designed PEM electrolyzer model also deviated only 0.6 % in costs from the experiment. Simulative scaling 

of PEM electrolysis to 2 MW demonstrates even higher cost reductions with the dynamic ramping method, as the 

larger electrolyzer has slower dynamics.

1. Introduction

The use of renewable energy sources, such as photovoltaic and wind 

power, is continuously increasing. As the existing amount of renew-

able energy in the grid often fluctuates due to weather conditions and 

its unavailability on demand, the market prices for electrical power

also vary. For “Power to Gas” (PtG) applications producing hydrogen 

through electrolysis, this creates an opportunity to reduce production 

costs.

In low-temperature hydrogen electrolysis, two fundamental meth-

ods are distinguished, namely: alkaline and proton exchange membrane 

(PEM) electrolysis. Alkaline electrolysis is already used on a large
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Nomenclature

Abbreviations

MILP Mixed-integer linear program

MINLP Mixed-integer nonlinear program

MPC Model predictive control

PID Proportional–Integral–Derivative

PEM Proton exchange membrane

PtG Power to gas

PWA Piece-wise affine

Greek symbols

𝛼 Charge transfer coefficient

𝜂𝑎𝑐𝑡 Activation losses

Latin symbols

A Area

C Heat capacity

c Concentration

D Drag factor

F Faraday constant

Δ𝐺0 Gibbs energy

Δ𝐻𝐻𝐻𝑉 Higher heating value 

𝑗 Current 

𝑗 0 Exchange current density

𝑛̇ Molar flow 

M Molar mass

𝑁 𝑐𝑒𝑙𝑙 Number of cells 

𝑃 Power 

𝑝 Pressure 

𝑝𝑟 Price

𝑄̇ Heat flow

𝑅 Resistance

𝑅𝑔𝑎𝑠 Gas constant

𝑇 Temperature

𝑡 Time

𝑡 Time

𝑈 Voltage

𝑧 Binary variable

Subscripts

0 Initial 

A Anode 

con Contact 

el Electric 

f Final 

HT Heat transfer 

K Cathode 

mem Membrane 

ohm Ohmic 

on On/off-decision 

ref Reference 

satt Saturation 

surr Surroundings

Superscripts

act Activation 

𝐻 2 

Hydrogen

max Maximum 

nom Nominal 

𝑂2  

Oxygen

SP Set-point 

steady Steady state

scale for industrial hydrogen production but is limited by its static 

load operational behavior [1,2]. PEM electrolysis has the capability of 

responding to rapid load changes [3,4] and meeting the increasing de-

mand for hydrogen in highly dynamic energy systems dominated by 

renewable energy sources. These PEM-electrolyzers achieve high power 

densities and are compact, making them a cost-effective technology for 

dynamic load operation. Still, PEM electrolysis has not yet been estab-

lished in terms of large-scale industrial use and is therefore a subject of 

ongoing research efforts.

While electrolyzers can quickly adapt their production rate [5,6], 

the load changes induce potentially undesirable stack temperature 

changes. To hold the stack temperature at a predefined value, simple 

Proportional–Integral–Derivative (PID) control methods are not effec-

tive [4,7] due to the strong non-linearity of the electrolyzer dynamics. 

Moreover, the increasing thermal mass associated with scaling into the 

MW class exacerbates the challenge. Various control methods, partic-

ularly model predictive control (MPC) for stack temperature control, 

prove to be viable [8,9]. However, due to heightened computational 

demands, this form of control is seldomly employed in practical appli-

cations. As an alternative to MPC, control methods can be implemented 

where load variation disturbance is compensated through feed-forward 

tracking control [4,10,11] using a model of the electrolyzer. In particu-

lar, when used in conjunction with the adaptive adjustment of control 

parameters across different operating ranges, favorable outcomes can be 

achieved [4,12,13].

However, if the temperature is controlled properly, effective oper-

ational management strategies for optimization and consequently cost 

reduction in electrolyzers are possible. For example, Scheepers et al. [14] 

optimize the temperature for PEM electrolyzers to improve the conver-

sion efficiency. Such static techno-economic optimizations and analyses 

are often based on simulations and provide only recommendations for

operational strategies [15–18]. The optimization of PEM electrolyzers 

via dynamic operation, particularly in conjunction with renewable en-

ergy sources such as wind and photovoltaics, has been explored in 

various studies [19–21]. Although the operation is highly dynamic in 

response to varying load conditions, many strategies documented in lit-

erature aim to maintain the temperature at a predetermined set-point 

[16,20]. However, slow temperature dynamics increase the flexibility 

of effective operational management strategies for electrolyzers, which 

play a crucial role in overall system efficiency. Slow temperature dy-

namics can be on the order of hours [22] and thus allow for operating 

in a power range that is not feasible in steady state because the heat 

production would be too high for the available cooling capacity. Still, 

if the temperature is reduced during times of high electricity prices, 

where a low production rate is desired, the electrolyzer can subse-

quently operate in overload for a scheduling-relevant amount of time 

(Fig. 1(a)).

Operating in this temperature-overload range is economically ben-

eficial as it allows better use of varying electricity prices. During low 

(or even negative) electricity prices, operation above the steady-state-

feasible power 𝑃 

max,steady is feasible as long as the temperature is below 

the maximum temperature 𝑇 

max (compare to Fig. 1(a)). The slower the 

temperature dynamics the longer a power above 𝑃 

max,steady is feasible. 

On the other hand, fast temperature dynamics would mean that once 

the power is above the steady-state-feasible power 𝑃 

max,steady the tem-

perature increases to the maximum 𝑇 

max and higher powers are not 

feasible for a relevant amount of time. For high temperature dynam-

ics also additional heating power would be needed, which results in 

increased operation and investment costs. As stated in Section 2.1.1 

our developed method only focuses on cooling power during dynamic 

load changes. Moreover, high-temperature dynamics can lead to thermal 

stress and maybe damaging the PEM-Stack.
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Fig. 1. (a) Using high dynamics in load changes and slow temperature dynamics 

to increase the electrolyzer’s flexibility: During times of high prices, production 

rates and so power 𝑃 are reduced substantially below the nominal power 𝑃 

nom, 

which allows a reduction of the temperature 𝑇 . Consequently, at times of low 

prices, an operation above the steady-state-feasible power 𝑃 

max,steady is possible 

until the maximum temperature 𝑇 

max is reached. (b) Benchmark case in which 

temperature dynamics were not taken into account and the power was limited 

by the steady-state-feasible power.

To achieve the discussed economic advantages, following the re-

quired temperature profile is key to ensuring good performance. Thus, 

for practical operation of electrolyzers accurate temperature tracking 

performance is required. In terms of overload operation, several com-

mercially available electrolyzers are capable of operating under such 

conditions for a limited duration [23]. For example, Flamm et al. [24] 

analyzed a commercially available electrolyzer with 100 kW rated power 

that could operate at 200 kW for limited amounts of time. During this 

overload operation, the electrolyzer heated up and had to be cooled 

later. Similarly, the Energy Park Mainz has electrolyzers with a 4 MW 

rated power but can operate at 6 MW for up to 15 min [25]. Studying 

a chlor-alkali electrolyzer, Simkoff and Baldea [26] took this possibil-

ity for overload operation into account in a scheduling optimization 

but used a data-driven surrogate model to approximate the nonlinear 

temperature dynamics. Alternatively, the integral over the power in 

overload [27] or the current in overload [24] was used as a proxy for 

temperature evolution. However, the produced heat is, in principle, a 

nonlinear function of power/current and is also temperature-dependent 

[28,29]. Thus a nonlinear optimization would be desirable to cap-

ture the actual physics and reduce safety margins. At the same time, 

electrolyzers have a minimum allowable current below which they 

should not operate in order to avoid degradation [30]. Consequently, 

if the possibility of turning the electrolyzer off would need to be 

considered, a discrete variable would be needed during scheduling 

optimization.

In our previous research [31,32], we presented dynamic ramping 

constraints for the demand response scheduling of electrolyzers with 

slow temperature dynamics. These dynamic ramping constraints exactly 

reformulated the nonlinear temperature dynamics into linear dynam-

ics with nonlinear constraints using a variable transformation which 

was possible because the temperature dynamics were differentially flat 

[33,34]. As nonlinear constraints are approximated on the safe side by 

piecewise affine functions, we can formulate a mixed-integer linear pro-

gram (MILP) that can be efficiently optimized and guarantees that the 

resulting temperature dynamics are feasible with respect to the original 

nonlinear process model. Thus, we can reduce the temperature during 

times of low production and allow an overload production, increas-

ing flexibility. Still, the dynamic ramping method was only studied via 

simulations in our previous research [31,32].

In this paper, we experimentally validate the dynamic ramping 

approach for electrolyzers with slow temperature dynamics. For this pur-

pose, three different underlying controllers are developed and compared 

to implement the results of the scheduling optimization. The controllers 

utilize the temperature profile, from the top layer, as the input and 

ensure accurate temperature tracking performance while effectively re-

jecting disturbances from load variations. The main contributions of this

publication method lie in the following key areas:

• Enhanced economic viability of PEM electrolyzers under fluctuating

electricity market conditions.

• Experimental validation of real-time scheduling optimization for

transient operation in PEM electrolyzers.

• Improved cost efficiency and scalability of 2 MW industrial-scale

PEM electrolyzers through simulation-based evaluation.

Section 2 provides a detailed description of the experimental test 

bench and the electrolyzer model. In Section 3, we present our dynamic 

ramping scheduling optimization method, within three stack temper-

ature control strategies. Section 4 presents the case study, which is 

subsequently followed by an analysis of the results in Section 5. The im-

plications of aging are discussed in Section 6, while Section 7 delivers 

the concluding remarks.

2. Electrolyzer system

All practical measurements were conducted at the IET-4 at the 

Forschungszentrum Jülich. A PEM electrolyzer with an electrical power 

capacity of 100 kW was employed. The system configuration was as fol-

lows: The core of the PEM electrolyzer was the electrochemical PEM 

cell, consisting of a stack of 27 cells with a cell area of 300 cm 

2 . The 

nominal operating point was set to 3 A∕cm 

2 and 2 V. What made the 

setup unique was the use of the desired input power. To provide the 

100 kW, two stacks of 50 kW each were used, which allowed the cell 

area to be kept small, ensuring optimal sealing of the produced hydro-

gen up to 50 bar. Fig. 2 shows the 100 kW system with the 50 kW 

stacks. The specifications of the stacks used are provided in Table 6 in the 

Appendix.

2.1. Test bench

Fig. 3 depicts the process engineering setup of the 100 kW system. 

The PEM electrolyzer consisted of the PEM stack where the elec-

trochemical reaction took place. For this purpose, deionized water was 

circulated on both the anode and cathode sides through two circula-

tion pumps. On the anode side, water serves as the reactant for splitting 

water. To control the electrochemical reaction, the current density 𝑗 𝑒𝑙

Fig. 2. 100 kW PEM electrolyzer.

Applied Energy 393 (2025) 126014 

3 



R. Keller, F.J. Baader, A. Bardow et al.

Fig. 3. Flow diagram of the 100 kW PEM electrolyzer.

was used as an input to the stack. This current density 𝑗 𝑒𝑙 

resulted in 

a stackvoltage 𝑈 𝑆𝑡𝑎𝑐𝑘 

, which forms the input power 𝑃 𝑒𝑙 

= 𝑗 𝑒𝑙 

𝑈 𝑆𝑡𝑎𝑐𝑘 

as a 

product.

From the electrochemical reaction, we obtained the product gas flow

𝑛̇ H  

 

on the cathode
2

 and 𝑛̇ O 

on
2

 the anode side. The gas separator tanks 

 

separate the water–gas mixture. With the drain valves, the pressure 𝑝 H 2 

and 𝑝O on
2

 each side could also be controlled. 
 

In addition to the generated hydrogen, heat was produced, which 

in turn heats up the PEM stack. To control the temperature, circulation 

using water as a medium on both sides facilitates the transfer of energy 

in the form of heat. Each side was equipped with a plate heat exchanger 

(red boxes in Fig. 3) and a heating element. This setup allows control of 

the stack temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 

to a predetermined set point depending on 

the operating point. The summarized operating conditions of the 100 kW 

PEM electrolyzer are detailed in Table 7 in the Appendix. Section 2.1.1, 

below, deals with the stack temperature control.

2.1.1. Stack temperature control

Heating elements were used to achieve the operating temperature 

in the cold start scenario. As this paper primarily focuses on cooling 

power during dynamic load changes, this aspect is not further elaborated 

upon here. Cooling power is realized through plate heat exchangers. The 

100 kW electrolyzer operates with the cooling power design of a single 

heat exchanger set at 18 kW. Using two heat exchangers on the anode 

and cathode sides enables a total cooling power of 36 kW. The volumet-

ric flow on the primary side of the heat exchanger was adjusted to meet 

the specifications of the heat exchanger and the electrochemical reac-

tion. On the secondary side, the flow of the cooling medium, water, can 

be regulated to dissipate a specific amount of heat. In order to achieve 

precise cooling power, represented by 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, the cooling medium was

maintained at a constant temperature of 6 

◦ C. The linear relationship 

between the control valve’s set point and the heat exchanger’s power 

was achieved through the deployed valve. The control valve used and 

the heat exchanger are illustrated on the right-hand side of Fig. 3.

The control algorithm commonly used in the 100 kW system to regu-

late the stack temperature is based on a higher-level control method, the 

model-based feed-forward control, designed in [4]. The control relies on 

two subtasks: The first instance calculates the required heat quantity us-

ing the PEM electrolyzer model and delivers it to the PEM stack. The 

second is based on a PID control, adjusting existing differences between 

the model and reality. Section 3.3 discusses the control algorithm in 

more detail.

2.2. Model

To investigate the thermal dynamics, the 100 kW system was mod-

eled, encompassing both its electrochemical and thermal behavior. The 

electrochemical aspects serve as the foundation for each electrolysis cell. 

The thermal behavior is modeled by the energy flows within the system

and the heat losses to the surroundings. The next two sections delve into 

this subject.

2.2.1. Electrochemical model

The Nernst voltage 𝑈 𝑛𝑒𝑟𝑛𝑠𝑡 constitutes the foundation of every elec-

trochemical cell. It delineates the minimal voltage required, under ideal 

conditions, to split water into its constituent elements, hydrogen and 

oxygen. The following equation:

𝑈 𝑛𝑒𝑟𝑛𝑠𝑡 = 

Δ𝐺 

0

2𝐹
+ 

𝑅 𝑔𝑎𝑠 

𝑇
2𝐹

ln 

(

𝑝 H2

𝑝𝑟𝑒𝑓 

H 2

√

√

√

√

𝑝 O2

𝑝𝑟𝑒𝑓 

O 2

) 

(1)

reveals that the Nernst voltage is influenced by various factors such as 

Gibbs energy Δ𝐺 

0 , partial pressures 𝑝 H2 

and 𝑝 O 2 

, and the respective tem-

perature 𝑇 . The constants 𝑅 𝑔𝑎𝑠 

and 𝐹 are given in Table 5. The reference 

pressures 𝑝𝑟𝑒𝑓H2
and 𝑝𝑟𝑒𝑓 

O 2
are defined as the ambient pressure. 

However, the PEM electrolysis cell encounters additional resistances 

that must be overcome to enable electrical current flow in the cell: 

Firstly, activation losses, induce the need for the overpotential 𝜂 ,𝑎𝑐𝑡  

which can be described by the Butler–Volmer equation. Given that in 

PEM electrolysis, the potential on the cathode side can be neglected, the 

Butler–Volmer equation can be simplified as follows:

𝜂 𝑎𝑐𝑡 = 𝛼 ln 

(

𝑗 𝑒𝑙
𝑗 0

) 

(2)

This overpotential 𝜂 𝑎𝑐𝑡 

then only depends on the charge transfer co-

efficient 𝛼, the exchange current density 𝑗 0 

, and the actual electrical 

current density 𝑗 𝑒𝑙 

. With in this work we experimental obtained the 

parameters 𝑗 0 and 𝛼, shown in Table 5. The flow of electric current in-

troduces additional ohmic losses. To summarize, the ohmic losses in the 

cell excite two mandatory elements. The primary components of these 

losses can be characterized by contact resistances 𝑅 𝑐𝑜𝑛 

and membrane

resistance 𝑅 𝑚𝑒𝑚. The resulting overvoltage losses are consolidated in:

𝑈 𝑜ℎ𝑚 

= (𝑅 𝑚𝑒𝑚 

+ 𝑅 𝑐𝑜𝑛 

)𝑗 𝑒𝑙 (3)

All parameters associated with ohmic losses were determined in 

conjunction with practical experiments and are documented in Table 5.

The final concentration overvoltage is characterized by the under-

supply of electrochemical reactants. In the case of large-scale PEM 

stacks, local distribution effects might occur, which, however, can be 

mitigated through an appropriate stack design and reactant supply 

[4,35]. Therefore, concentration overvoltage does not play a role in the 

modeling process.

If we now combine all overpotentials, the resulting outcome is the 

cell voltage represented in the following equation:

𝑈 𝑐𝑒𝑙𝑙 

= 𝑈 𝑜ℎ𝑚 

+ 𝑈 𝑛𝑒𝑟𝑛𝑠𝑡 + 𝜂 𝑎𝑐𝑡 

(4)

The required power for water-splitting can thus be represented by 

the current density 𝑗 𝑒𝑙 and the resulting cell voltage 𝑈 𝑐𝑒𝑙𝑙 

. Additionally,
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a temperature dependency on the cell voltage 𝑈 𝑐𝑒𝑙𝑙 can be observed

through Eq. (2), which constitutes a significant factor attributed to the 

thermal behavior of the cell and stack. In summary, the cell voltage de-

pends on the current density 𝑗 𝑒𝑙 

(𝑈 𝑜ℎ𝑚 

, 𝜂 𝑎𝑐𝑡 

), temperature 𝑇 (𝑈 𝑛𝑒𝑟𝑛𝑠𝑡 

), and 

the pressures 𝑝 H 2 

, 𝑝 O 2 

(𝑈 𝑛𝑒𝑟𝑛𝑠𝑡). The pressures 𝑝 H 2 

, 𝑝 O 2 

were maintained

constantly during operation. Thus, for control purposes, the cell voltage 

can be seen as a function of the current density 𝑗 𝑒𝑙 

and temperature 𝑇 .

Based on the cell voltage 𝑈 𝑐𝑒𝑙𝑙 

(𝑗 𝑒𝑙 

, 𝑇 ), the electric input power 𝑃 𝑒𝑙 for an

entire PEM-Stack can be calculated using the active cell area 𝐴 𝑐𝑒𝑙𝑙 

, the 

temperature of the stack 𝑇 𝑆𝑡𝑎𝑐𝑘, and the number of individual cells 𝑁 𝑐𝑒𝑙𝑙: 

𝑃 𝑒𝑙 

= 𝑗 𝑒𝑙 

⋅ 𝐴 𝑐𝑒𝑙𝑙 

⋅ 𝑈 𝑐𝑒𝑙𝑙 

(𝑗 𝑒𝑙 

, 𝑇 ) ⋅ 𝑁 𝑐𝑒𝑙𝑙 

= 𝑓 (𝑗 𝑒𝑙 

, 𝑇 𝑆𝑡𝑎𝑐𝑘) (5)

2.2.2. Adapting the model to aging

For the experiments in the present publication, we start with the 

model parameters from our previous work [4]. However, we experi-

enced an aging leading to a root mean square error (RMSE) in the cell

voltage 𝑈 𝑐𝑒𝑙𝑙 of 0.028 V and a maximum error of 0.064 V (Fig. 4).

To compensate, we introduce two correction factors 𝑎 1 

, 𝑎 2 into the

calculation of the cell voltage (compare to Eq. 4):

𝑈 𝑐𝑒𝑙𝑙 

= 𝑎 2 

𝑈 𝑜ℎ𝑚 

+ 𝑈 𝑛𝑒𝑟𝑛𝑠𝑡 

+ 𝑎 1 

𝜂 𝑎𝑐𝑡 (6)

With least-squares regression, we determine the correction factors to 

𝑎 1 = 0.915 and 𝑎 2 

= 1.31. The adapted model has a RSME of only

0.0027 V and a maximum error of 0.017 (Fig. 4). Aging effects and the 

adaptation of the model are further discussed in Section 6. 

2.2.3. Thermal model

For the thermal model of the electrolyzer, all energy flows 

∑ 

𝑘 𝑄̇ 𝑘 into

and out of the system boundary are required. To control the resulting 

temperature changes, the cooling power ̇ 𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

from Section 2.1.1 was

used as the control variable. With the total heat capacity 𝐶 100kW 

, the

temperature changes are given according to the energy balance:

𝑇̇ 𝑆𝑡𝑎𝑐𝑘 = 

∑ 

𝑘 𝑄̇ 𝑘 + 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐶 100kW
(7)

All parameters for the 100 kW PEM system can be found in Table 5. 

The generated hydrogen contains the energy that electrochemically exits 

the system on the cathode side. Here, the electrical current density 𝑗 𝑒𝑙 

is 

of crucial importance. Moreover, the number of cells 𝑁 𝑐𝑒𝑙𝑙 

and the active 

cell area 𝐴 𝑐𝑒𝑙𝑙 

play a decisive role, and the generated hydrogen flow can 

be determined through Faraday’s law, shown in the following equation:

𝑛̇H 2
= 𝑁 𝑐𝑒𝑙𝑙 

⋅ 𝐴 𝑐𝑒𝑙𝑙 ⋅ 

𝑗 𝑒𝑙
2𝐹 

(8)

The oxygen produced on the anode side is given as:

𝑛̇O 2
= 𝑁 𝑐𝑒𝑙𝑙 

⋅ 𝐴 𝑐𝑒𝑙𝑙 ⋅ 

𝑗 𝑒𝑙
4𝐹

(9)

If the energetic content of the hydrogen is utilized, the resulting 

energy flow can be derived from Eq. (8) to yield:

𝑄̇ H 2 

= 𝑁 𝑐𝑒𝑙𝑙 

⋅ 𝐴 𝑐𝑒𝑙𝑙 ⋅
𝑗 𝑒𝑙
2𝐹 

⋅ Δ𝐻 𝐻𝐻𝑉 ,H 2 

(10)

In this study, the higher heating value of the hydrogen Δ𝐻 𝐻𝐻𝑉 ,H 2 

was utilized. However, not only hydrogen leaves the system on the cath-

ode side. Due to the operating temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 

of PEM electrolysis, 

the existing hydrogen becomes saturated with water vapor. The satura-

tion vapor pressure 𝑝 H 2 

,𝑠𝑎𝑡𝑡 

on the cathode side, as well as on the anode 

side 𝑝 O 2 

,𝑠𝑎𝑡𝑡 

, were determined as per [36]. With the given parameter in 

Table 5, the pressure on the cathode 𝑝 𝐾 

and anode sides 𝑝 𝐴 

and the heat 

of vaporization water, the amount of energy leaving the system as water 

vapor can be formulated with:

𝑄̇ 𝑆𝑡𝑒𝑎𝑚 

= − 

(

𝑝 H 2 

,𝑠𝑎𝑡𝑡

𝑝 𝐾 − 𝑝 H 2 ,𝑠𝑎𝑡𝑡 

⋅ 𝑛̇ H 2 

+
𝑝 O 2 

,𝑠𝑎𝑡𝑡

𝑝 𝐴 

− 𝑝 O 2 ,𝑠𝑎𝑡𝑡
⋅ 𝑛̇ O 2 

) 

⋅

(𝑑 1 

⋅ 𝑇 𝑆𝑡𝑎𝑐𝑘 + 𝑑 2) (11)

The consumed water for water electrolysis must be reintroduced into 

the system. The supplied water has the surrounding temperature and 

must be heated to the electrolyzer’s operating temperature. Additionally, 

a certain portion of the water permeates from the anode to the cathode 

side. In the case of the 100 kW PEM system, the permeated water is 

discarded and thus must also be supplied to the system. The drag factor 

𝐷 represents the water permeation and is stated in Table 5. The resulting 

mass flow of the total water can be determined as follows:

𝑚̇ H 2 

O 

= 𝑀 H 2 

O 

⋅ 𝑛̇ H 2 

⋅ (1 + 2𝐷) (12)

To heat up the supplied water, the energy flow is calculated with:

𝑄̇ H 2 

O 

= 𝑚̇ H 2 

O 

(𝑇 𝑆𝑡𝑎𝑐𝑘 

− 𝑇 𝑠𝑢𝑟𝑟) ⋅ 𝑐 H 2 

O 

(13)

Finally, the only remaining aspect is the energy flow, which is dis-

sipated into the surroundings. A crucial factor in this process is the 

thermal capacitance and thermal resistance to the surroundings. These 

two significant elements play a substantial role in the subsequent tem-

perature dynamics within the electrolyzer. The heat dissipation to the 

surroundings is

𝑄̇ 𝑠𝑢𝑟 

= (𝑇 𝑆𝑡𝑎𝑐𝑘 

− 𝑇 𝑠𝑢𝑟𝑟) ⋅ 𝑅 𝐻𝑇 100kW
(14) 

With 𝑅 𝐻𝑇 100kW 

, the thermal resistance to the surroundings is given.

This parameter is specific for each electrolyzer and is presented in 

Table 5 for the 100 kW electrolyzer.

Fig. 4. Comparison of original and adapted model to experimental data.
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To summarize, the entire energy flow into and out of the balancing 

space is given as:

∑ 

𝑘
𝑄̇ 𝑘 = 𝑃 𝑒𝑙 + ̇ 𝑄 H2 

+ 𝑄̇ 𝑆𝑡𝑒𝑎𝑚 

+ ̇ 𝑄 H 2 

O 

+ ̇ 𝑄 𝑠𝑢𝑟 

(15)

For control purposes, this means that the derivative of the temper-

ature 𝑇̇ 𝑆𝑡𝑎𝑐𝑘 is a function of the temperature 𝑇 , the current density 𝑗 𝑒𝑙,

and the control variable ̇ 𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

(compare to Eq. 7).

2.3. Limiting cooling power

As our electrolyzer is a test bench with a relatively low rated power, 

the cooling power was designed to be on the conservative side, i.e., it is 

always sufficient to maintain the electrolyzer below a maximum stack 

temperature of 𝑇max 

𝑆 =  

𝑡𝑎𝑐𝑘  80 

◦C. We define the maximum electrical input

power as the max  

 power at 𝑇𝑆 =𝑡𝑎𝑐𝑘  80 

◦C and the maximum current density 

 𝑗max = 2 ∕  

2 maxof A cm .𝑒𝑙  This power is 𝑃 =𝑒𝑙  62.9 kW. 

As the overload operation of commercially available electrolyzers is 

caused by limited cooling capacities, we limited the cooling power of our 

test bench to mirror the same conditions. For available electrolyzers, the 

nominal, i.e., steady-state-feasible, power was reported to be 50 % [24] 

or 2/3 [25] of the maximum power. Here, we define a nominal power 

of 𝑃 

𝑛𝑜𝑚 

𝑒𝑙 = 50.3 kW, which is 80 % of the maximum power 𝑃 

max
𝑒𝑙 . Thus,

we are on the conservative side with respect to the overload potential.

As the maximum cooling power is 𝑄̇ 

max
𝑐𝑜𝑛𝑡𝑟𝑜𝑙, we define the cooling 

needed to keep the electrolyzer temperature in steady-state at the nomi-

nal power 𝑃 

𝑛𝑜𝑚
𝑒𝑙 and the maximum temperature 𝑇 

max
𝑒𝑙 . This cooling power

is 𝑄̇ 

max
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 3.6 kW. In the following, we limit the available cooling

power to 𝑄̇ 

max
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 even if our test bench would, in principle, permit 

higher cooling to simulate the conditions in commercially available 

electrolyzers for which overload operation is interesting.

Based on this setup, we can demonstrate how scheduling optimiza-

tion with dynamic ramping constraints can optimize the electrolyzer’s 

temperature and make use of overload operation.

3. Method

Our method includes both the economic scheduling optimization 

and control of the electrolyzer. In the following, we first present this 

approach (Section 3.1) and then discuss the scheduling optimization 

(Section 3.2) and control separately (Section 3.3).

3.1. Integrated scheduling and control approach

The traditional scheduling and control structure where scheduling 

considers steady-state models is not applicable here, as the slow tem-

perature dynamics are scheduling-relevant, i.e., on the same timescale 

as electricity prices. Thus, an approach is needed to integrate scheduling 

and control [37,38]. These approaches can be classified into bottom-up 

and top-down approaches [39]. An example of a bottom-up approach 

that leads to full integration is economic model predictive control (MPC) 

[40]. For our problem, such an economical MPC would have to opti-

mize the slow nonlinear temperature dynamics and, at the same time, 

reject fast disturbances (Fig. 5, left). However, due to the fact that the 

PEM electrolyzer has strongly nonlinear temperature dynamics, opti-

mization problems for this kind of system are hard to solve, whereas fast 

disturbances require frequent re-calculation. Note that discrete on/off-

decisions also introduce integer variables such that the optimization 

problem is a nonlinear mixed-integer linear problem (MINLP). Such dy-

namic MINLPs can typically not be solved within seconds, which would, 

however, be needed for a disturbance rejection. Thus, we do not focus 

on the economical MPC approach in the following.

In order to avoid this MINLP, we chose a top-down integration ap-

proach that includes dynamics in scheduling but still splits the problem 

into two sub-tasks [39] (Fig. 5, right). The upper layer focuses on the 

scheduling optimization with dynamic ramping constraints. This ap-

proach has the chief advantage, that we can perform the economic

Fig. 5. Comparison of full integration of scheduling and control with an eco-

nomical model predictive control (MPC) and the proposed top-down approach, 

which maintains task separation between scheduling and control.

optimization in the coordinate space of the process outputs where tem-

perature dynamics are linear, which is discussed in Section 3.2 and leads 

to an easier-to-solve mixed-integer linear problem (MILP). Utilizing the 

available results from the dynamic scheduling optimization the bottom 

layer implements an appropriate control methodology to ensure accu-

rate temperature tracking performance while effectively compensating 

disturbances from load variations. Due to this underlying controller, 

the economic optimization from the upper layer can be performed less 

frequently, which leads to an additional advantage of the approach. 

In Section 3.3 three control methods are introduced for identifying a 

suitable control method to guarantee the desired temperature tracking 

performance of the optimization.

3.2. Scheduling using dynamic ramping

In this section, we summarize the dynamic ramping approach, which 

allowed us to reformulate the nonlinear temperature dynamics of the 

electrolyzer into a mixed-integer linear formulation. As this reformula-

tion was based on our previous work [31,32], where the reformulation 

was studied based on simulations, we only summarize it briefly here.

The principle of dynamic ramping constraints is to reformulate a 

nonlinear dynamic process model with linear constraints into a linear 

dynamic model with nonlinear ones. Subsequently, these nonlinear con-

straints are approximated conservatively by means of piecewise affine 

(PWA) constraints. The conservatism of the PWA constraints ensures that 

the resulting operation is feasible with respect to the original nonlinear 

process model. At the same time, the PWA constraints can, in principle, 

approximate the true nonlinear aspect to any degree of accuracy. Note 

that the reformulation into dynamic ramping constraints is, in general, 

possible for a dynamic model, which is differentially flat as flatness im-

plies that there is a coordinate transformation to a coordinate space in 

which the dynamics are linear [33,34].

As a result of the dynamic ramping reformulation, the decision vari-

ables in the optimization are the hydrogen production rate 𝑛̇ H 

and
2

 the 

 

temperature derivative of the stack temperature 𝑇̇ . The dynamic𝑆𝑡𝑎𝑐𝑘  

ramping constraints limit the stack temperature 𝑇̇ by𝑆𝑡𝑎𝑐𝑘  upper and 

lower limits that are PWA functions of the hydrogen production rate 

𝑛̇ H and2
 

 

the stack temperature 

 

𝑇𝑆 ;𝑡𝑎𝑐𝑘

𝑇̇ 

min
𝑆𝑡𝑎𝑐𝑘,𝑃𝑊 𝐴 

(𝑛̇ H 2 

, 𝑇 𝑆𝑡𝑎𝑐𝑘 ≤ 𝑇̇ 𝑆𝑡𝑎𝑐𝑘 ≤ 𝑇̇ 

max
𝑆𝑡𝑎𝑐𝑘,𝑃𝑊 𝐴 

(𝑛̇ H 2
, 𝑇 𝑆𝑡𝑎𝑐𝑘) (16)

Further details on the dynamic ramping reformulation are given in the 

Appendix and our previous publications [31,32].

For the electric input power, which is needed to calculate the cost of 

operation, we use a linear approximation:

𝑃 𝑒𝑙,𝑙𝑖𝑛 

(𝑛̇ H 2 

, 𝑇 𝑆𝑡𝑎𝑐𝑘 

) = 𝑎 0 

+ 𝑎 𝑛̇ H 2 

𝑛̇ H 2 

+ 𝑎 𝑇 

𝑇 𝑆𝑡𝑎𝑐𝑘, (17)

with parameters 𝑎 0 

, 𝑎 𝑛̇ H 2 

, 𝑎 𝑇 

that are fitted to the original model. Note 

that if a linear approximation would not be accurate enough a PWA
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approximation can be used for the electric input power of electrolyzers 

[24]. 

The derived dynamic ramping constraints can be incorporated into a 

mixed-integer linear optimization with an economic objective function. 

The explicit representation of temperature dynamics allows us to repre-

sent the flexibility to operate in overload for a certain period of time. In 

the following, we discuss the economic optimization performed in this 

study to test the concept. 

3.2.1. Economic scheduling optimization 

In a typical demand response case [6,41], the electrolyzer must pro-

duce a nominal production rate 𝑛̇ 

𝑛𝑜𝑚
H 2
on average over the time horizon

[ 

𝑡 0 

, 𝑡 𝑓 

] 

but can flexibly schedule its production volume as a reaction to 

the financial incentives given by electricity markets. The optimization 

problem for scheduling the electrolyzer’s operation is summarized in the 

following:

min
𝑇̇ 𝑆𝑡𝑎𝑐𝑘(𝑡),𝑛̇ H 2 

(𝑡) ∫

𝑡 𝑓

𝑡0
𝑝𝑟(𝑡)𝑃 𝑒𝑙,𝑙𝑖𝑛 

(𝑛̇ H 2 

(𝑡), 𝑇 𝑆𝑡𝑎𝑐𝑘(𝑡))𝑑𝑡 (Pa)

s.t. 𝑇̇ 

min
𝑆𝑡𝑎𝑐𝑘,𝑃𝑊 𝐴 

(𝑛̇ H 2 

(𝑡), 𝑇 𝑆𝑡𝑎𝑐𝑘(𝑡)) ≤ 𝑇̇ 𝑆𝑡𝑎𝑐𝑘(𝑡) ≤ 𝑇̇ 

max
𝑆𝑡𝑎𝑐𝑘,𝑃𝑊 𝐴 

(𝑛̇ H 2 

(𝑡), 𝑇 𝑆𝑡𝑎𝑐𝑘 

(𝑡)) 

∀𝑡 ∈ 

[ 

𝑡 0 

, 𝑡 𝑓 

]

(Pb)

𝑧 𝑜𝑛(𝑡)𝑛̇min 

H 2
≤ 𝑛̇ H 2 

(𝑡) ≤ 𝑧 𝑜𝑛 

(𝑡)𝑛̇max 

H 2
∀𝑡 ∈ 

[ 

𝑡 0, 𝑡 𝑓 

]

(Pc)

∫

𝑡 𝑓

𝑡 0

𝑛̇ H 2
(𝑡)𝑑𝑡 = 𝑛̇ 

𝑛𝑜𝑚
H 2

(𝑡 𝑓 − 𝑡 0 

) (Pd)

𝑇 𝑆𝑡𝑎𝑐𝑘 

(𝑡 0 

) = 𝑇 𝑆𝑡𝑎𝑐𝑘,0 

(Pe) 

𝑇 

min
𝑆𝑡𝑎𝑐𝑘 ≤ 𝑇 𝑆𝑡𝑎𝑐𝑘(𝑡) ≤ 𝑇 

max
𝑆𝑡𝑎𝑐𝑘 ∀𝑡 ∈ 

[ 

𝑡 0, 𝑡 𝑓 

] 

(Pf)

The objective is to minimize the electricity costs, which are 

the integral over the electricity price 𝑝𝑟(𝑡) and electric power

𝑃 𝑒𝑙,𝑙𝑖𝑛(𝑛̇ H 2 

(𝑡), 𝑇 𝑆𝑡𝑎𝑐𝑘 

(𝑡)) (compare to Eq. 17) (Pa). The time derivative of

the temperature 𝑇̇ 𝑆𝑡𝑎𝑐𝑘(𝑡) is limited by the PWA dynamic ramping con-

straint (compare to Eq. 24 and Fig. 19) (Pb). The binary variable 𝑧 𝑜𝑛 

(𝑡) 

ensures that the electrolyzer either produces hydrogen between the min-

imum and maximum production rates 𝑛̇ 

min 

H 2 

, 𝑛̇ 

max
H 2
or is off (Pc). Eq. (Pd) 

ensures that the nominal production 𝑛̇ 

𝑛𝑜𝑚
H 2
is reached on average over 

the time horizon 

[ 

𝑡 0 

, 𝑡 𝑓 

] 

. Finally, Eq. (Pe) states the initial temperature

𝑇 𝑆𝑡𝑎𝑐𝑘,0, and Eq. (Pf) ensures that it stays within its limits 𝑇 

min 

𝑆𝑡𝑎𝑐𝑘 

, 𝑇 

max
𝑆𝑡𝑎𝑐𝑘 

.

Using discretization with collocation on finite elements [42,43], the 

optimization Problem (P) is converted into an MILP, which we solve us-

ing Gurobi [44]. The result of this scheduling optimization problem is a 

trajectory for the temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 

(𝑡), the time derivative of the tem-

perature 𝑇̇ 𝑆𝑡𝑎𝑐𝑘(𝑡), and the hydrogen production 𝑛̇ H 2 

. These quantities are

passed as set-points to the underlying control discussed in the following 

section.

3.3. Control methods

In Section 2.1.1, the control method utilized for stack temperature 

control in the 100 kW PEM electrolyzer was briefly described. The 

control strategy employed, involving adaptive PID control, is further 

elaborated upon in this section, as it was applied during operation of 

the PEM electrolyzer. 

As the main novelty of this publication, Section 2.2.3 addresses the

dynamic ramping and associated time derivative of the stack tempera-

ture 𝑇̇ 𝑆𝑡𝑎𝑐𝑘. This temporal variation in stack temperature is also intended 

to be integrated into the existing control algorithm and utilized as a feed-

forward control strategy. We compare two model-based feed-forward 

control strategies: one with a static model and one with a dynamic 

model. 

Finally, these two feed-forward controls are compared with a purely

adaptive PID control. This section introduces all three control methods 

that we compared in this study.

3.3.1. Static model-based feedforward adaptive PID control

First, we introduce the static version of the feed-forward control,

which was used in our previous publication [4]. The principle of the

higher-level control strategy with static model-based feed-forward and

adaptive PID control is shown in Fig. 6. This general control method

was used during normal operation of the 100 kW PEM electrolyzer and

was developed in [4]. For our special case of dynamic ramping, the ini-

tial set-points for the control algorithm are derived from the economic

scheduling optimization outlined in Section 3.2.1. The result of this op-

timization problem is a trajectory of set-points for the time-derivative

temperature 𝑇̇ 

𝑆𝑃 and the𝑆𝑡𝑎𝑐𝑘   hydrogen production 𝑛̇ 

𝑆𝑃 . With the integra-H2
   

 

 

tion of 𝑇̇ 

𝑆𝑃 the𝑆𝑡𝑎𝑐𝑘  set-points of the temperature 𝑇 

𝑆𝑃 are𝑆𝑡𝑎𝑐𝑘  also given. The 

proportional relationship between 𝑛̇ 

𝑆𝑃 andH2
 

 

𝑗 

𝑆𝑃 can𝑒𝑙  be determined with 

Eq. (8) in Section 2.2.3.

The control algorithm itself relies on two sub-tasks: With Eq. (7) from

Section 2.2.3, it can be directly seen that if ̇ 𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

is equal to 

∑ 

𝑘 𝑄̇ 𝑘 the

stack temperature must be constant. Thus, the time derivative of the tem-

perature as a given set-point can be neglected for our static calculation. 

If no changes in temperature take place, Eq. (23) can be reformulated 

as follows:

𝑄̇ 

𝑛𝑜𝑚
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑓

(

𝑇 𝑆𝑃
𝑆𝑡𝑎𝑐𝑘, 𝑗

𝑆𝑃
𝑒𝑙

) 

(18)

With this equation, the nominal cooling power 𝑄̇ 

𝑛𝑜𝑚 for tempera-𝑐𝑜𝑛𝑡𝑟𝑜𝑙  

ture equilibrium can be determined for the given set-points 𝑇 

𝑆𝑃 and𝑆𝑡𝑎𝑐𝑘  

𝑗𝑆𝑃 of the scheduling𝑒𝑙   optimization. The control algorithm uses this 

model-based calculation in the first instance and delivers 𝑄̇ 

𝑛𝑜𝑚 in the𝑐𝑜𝑛𝑡𝑟𝑜𝑙  

second. Thus, the nominal cooling power is only given for a static operat-

ing condition with no changes in temperature or feedback from process 

variables. 

The second control sub-task is to compensate for differences between

the model and reality. For this sub-task, a PID-controller is used. To 

identify the best PID parameters, the model of the PEM electrolyzer 

was linearized under different operating conditions. For each operating 

condition, the optimal parameters were identified and are presented in 

Table 8 in the Appendix. Consequently, the PID parameters of the con-

trol algorithm were adapted depending on operating conditions given 

by the current density set-point 𝑗 

𝑆𝑃 and𝑒𝑙  the actual stack temperature 

𝑇 . The output of the PID algorithm ̇ closes the gap between𝑠𝑡𝑎𝑐𝑘        Δ𝑄𝑐 𝑜𝑛𝑡𝑟𝑜𝑙    

the nominal defined cooling power via the model and the real cooling 

power needed to keep the temperature at its set-point. The summary of

Fig. 6. Static model-based feed-forward with adaptive PID control for a 100 kW 

PEM electrolyzer. Based on the set-points for temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 

and hydro-

gen production rate 𝑛̇ 

𝑆𝑃 

H 2
, the control sets the cooling power 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and current

density 𝑗 𝑒𝑙 

.
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both instances forms the manipulated variable 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, which enters the

PEM system.

The model-based feed-forward algorithm of this control strategy only 

deals with constant stack temperatures. For dynamic ramping, it is also 

intuitive to take temperature changes into consideration for calculations. 

The next section provides more details regarding this type of control al-

gorithm primarily, exploring dynamic approaches through temperature 

changes.

3.3.2. Dynamic model-based feedforward adaptive PID control

To exploit the full power of the dynamic ramping approach, the feed-

forward algorithm from Section 3.3.1 is expanded to include dynamic 

changes in stack temperature. Thus, the derivative 𝑇̇ 

𝑆𝑃
𝑆𝑡𝑎𝑐𝑘 for the given 

set-points of the temperature 𝑇 

𝑆𝑃
𝑆𝑡𝑎𝑐𝑘 is now taken into consideration. 

If we follow the same procedure from Section 3.3.1 and take time-

dependent temperature changes into account, Eq. (23) can be written 

as follows:

𝑄̇ 

𝑛𝑜𝑚
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑓

(

𝑇̇ 

𝑆𝑃
𝑆𝑡𝑎𝑐𝑘, 𝑇

𝑆𝑃
𝑆𝑡𝑎𝑐𝑘, 𝑗

𝑆𝑃
𝑒𝑙

) 

(19)

The determined nominal cooling power 𝑄̇ 

𝑛𝑜𝑚
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 now also depends 

on temperature changes arising from the scheduling optimization. This 

additional dependency is used not only to determine the nominal cool-

ing power for static operating points during operation but also the 

nominal cooling power required over time to optimally follow tempera-

ture changes. This dynamic feed-forward approach can be advantageous 

under strong dynamic conditions and can significantly improve stack 

temperature control. Fig. 7 shows the additional dependency of 𝑇̇ 

𝑆𝑃
𝑆𝑡𝑎𝑐𝑘

within the control algorithm. The rest of the control algorithm remains 

the same as that under the static conditions outlined in Section 3.3.1.

3.3.3. Adaptive PID control

Finally, in order to check the effect of the feed-forward control, we 

study a case in which only the adaptive PID algorithm acts to control 

the stack temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 (Fig. 8). As conveyed in Sections 3.3.2 

and 3.3.1, only the schedule of the PID parameters for different op-

erating conditions remain active (Table 8 in the Appendix). Here, the

manipulated variable of cooling power 

̇ 𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

only depends on the PID

algorithm. 

4. Case study

In this section, we summarize the parameters used for the experi-

mental validation of our method. We assume a generic electricity price

Fig. 7. Dynamic model-based feed-forward with adaptive PID control for 100 kW

PEM electrolyzer. Based on the set-points for temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 and hydro-

gen production rate 𝑛̇ 

𝑆𝑃 

H 2
, the control sets the cooling power ̇ 𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

and current

density 𝑗 𝑒𝑙.

Fig. 8. Adaptive PID control of the 100 kW PEM electrolyzer. Based on the set-

points for temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 

and hydrogen production rate 𝑛̇ 

𝑆𝑃 

H 2
, the control sets

the cooling power 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and current density 𝑗 𝑒𝑙 

.

profile with 15-min time steps, as preliminary simulations showed that 

the temperature dynamics of this 100 kW test bench electrolyzer fall 

within this time scale. Note that the temperature dynamics of elec-

trolyzers become slower with size, as the thermal capacity increases 

more strongly than the convective heat losses to the ambient [45]. In 

Section 5.5, we undertake a simulation-based upscaling in which we 

compare the performance of our 100 kW test bench to a 2 MW elec-

trolyzer. In this simulation-based assessment, we also vary the price 

spread between the maximum and minimum electricity prices of our 

generic price profile.

Following [46], we assume an average utilization rate of 80 % for the 

electrolyzer. Consequently, the nominal production rate 𝑛̇ 

𝑛𝑜𝑚 

H 2
(compared 

to (Pd)) requires a power 𝑃 

nom that is equal to 80 % of the steady-state-

feasible power 𝑃 

max,steady (cf. Fig. 1).

We consider the scheduling optimization (P) based on dynamic 

ramping constraints in two variants: In one, we assume that the elec-

trolyzer can be turned off such that the binary 𝑧 𝑜𝑛 

(𝑡) in (Pc) is a 

degree of freedom, whereas in the other, we assume that the elec-

trolyzer must remain active during operation such that the binary 𝑧 𝑜𝑛 

(𝑡) 

is fixed to one. We distinguish these two cases because, while turn-

ing off the electrolyzer can be economically beneficial, it is technically 

challenging, as the electrolyzer is operated under pressure. Due to the 

permeation of hydrogen to the anode side, hydrogen is continuously 

measured in oxygen to obey the lower explosion limit. This measure-

ment is realized through a bypass with a constant volume flow. If 

the electrolyzer is turned off, the pressure decreases and the measure-

ment ends. For safety reasons, the system would shut down in such a 

state.

For both cases, with and without turn-off, we introduced a bench-

mark case without dynamic ramping constraints. In this benchmark case, 

the electrolyzer also performed a demand response, but the temperature 

profile was not optimized. Thus, the electrolyzer was forced to powers 

below the maximum steady-state-feasible power 𝑃 

max,steady . All four cases 

(dynamic ramping and benchmark with and without turning off) were 

studied in the simulations. Experimentally, we analyzed the dynamic 

ramping case with turn-off together with the dynamic feed-forward 

control (Section 3.3.2) twice. For the dynamic ramping case without 

turn-off, we experimentally studied all three control methods introduced 

in Section 3.3, as the simulations show that the effect of the feed-forward 

control could be especially interesting here. Finally, we considered the 

benchmark case without turning the electrolyzer off experimentally. 

Here, we first studied the benchmark with dynamic feed-forward control 

(Section 3.3.2) and then without a feed-forward control and placed the 

set-point for the PID control at 80 

◦ C. The experimentally investigated 

cases are summarized in Table 1.
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Table 1 

Overview of the conducted experiments.

Experiment Approach Turn off Control

𝐷𝑅 

𝑤𝑖𝑡ℎ 𝑜𝑓 𝑓
𝐷𝐹 𝐹 

1 Dynamic ramping Yes Dynamic feed-forward

𝐷𝑅 

𝑤𝑖𝑡ℎ 𝑜𝑓 𝑓
𝐷𝐹 𝐹 

2 Dynamic ramping Yes Dynamic feed-forward

𝐵 

𝑛𝑜 𝑜𝑓 𝑓
𝐷𝐹 𝐹 

Benchmark No Dynamic feed-forward 

𝐵 

𝑛𝑜 𝑜𝑓 𝑓
𝑃𝐼𝐷 

Benchmark No Pure PID 

𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓
𝐷𝐹 𝐹 

Dynamic ramping No Dynamic feed-forward 

𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓
𝑃𝐼𝐷 

Dynamic ramping No Pure PID 

𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓
𝑆𝐹𝐹 Dynamic ramping No Static feed-forward 

4.1. Solution times

The scheduling optimization problems are solved using Gurobi ver-

sion 9.5.2 on an Intel Core i7 processor. The solution time is 10 s without 

the discrete decision to turn the electrolyzer off and 15 s with this dis-

crete decision. Note that such fast solution times would allow a frequent 

re-optimization, which could be required in real-time markets.

5. Results 

5.1. Experimental validation for the base case

We first discuss the base case with our dynamic ramping method, the 

possibility of turning the electrolyzer off, and the dynamic feed-forward 

control (Experiment 𝐷𝑅 

𝑤𝑖𝑡ℎ 𝑜𝑓 𝑓
𝐷𝐹 𝐹 1 in Table 1). The optimization sched-

ules the power in overload operation at times of the lowest electricity 

prices, e.g., 1–1.25 h, (Fig. 9). To enable the overload operation, the 

electrolyzer operates at lower powers half an hour prior, to reduce its 

temperature. Thus, according to the nonlinear process model, an over-

load operation is possible for 15 min without violating the maximum 

temperature of 80 

◦ C (compare with the black curves from simulations 

displayed in Fig. 9). While the temperature is lowered, the electrolyzer 

is turned off four times (0.75–1 h, 1.75–2 h, 3.75–4 h, and 4.75–5 h in 

Fig. 9).

Note that the reduction in temperature during times of low power 

is partly unavoidable due to lower heat production and partly a deci-

sion by the scheduling optimization as can be seen clearly by comparing 

the dynamic ramping result to the benchmark at hour 2 (Fig. 9), where 

the electrolyzer operates at the same power for both dynamic ramping 

and benchmark cases: In the benchmark case, the lower heat production 

leads to a temperature reduction down to 69 

◦ C. During this temperature 

reduction, the cooling power is zero as in general higher temperatures 

are desirable due to higher efficiencies. In contrast, our dynamic ramp-

ing approach uses a higher cooling power and cools the electrolyzer 

down to 58 

◦ C because this lower temperature allows a higher overload 

operation in the following timestep.

Comparing the simulative and experimental results shows that elec-

trical power is predicted well by the process model (Fig. 9). The stack 

temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 

can be tracked overall with small deviations in the 

underlying feed-forward controller. In steady-state operation, the exper-

imental temperature oscillates around the set-point (see, e.g., 0–0.5 h 

in Fig. 9). This behavior can be explained by unmodeled features of 

the test bench: Through the electrochemical reaction, as described by 

Section 2.2.1, water is consumed on the anode side. Additionally, water 

permeates from the anode side through the membrane to the cathode 

side (compare to Eq. 12). It is evident that both processes depend heav-

ily on the input power and result in a reduction of water content on the 

anode side. In the case of our 100 kW electrolyzer, the replenished wa-

ter is at an ambient temperature and dosed on the anode side through a 

two-point control algorithm. This process extracts thermal energy from 

the system, which manifests as periodic fluctuations in stack tempera-

ture. The temperature also deviates from the set-point during dynamic 

operation, which leads to short periods in which the electrolyzer over-

shoots the maximum temperature of 80 

◦ C. The maximum overshoot is 

1.8 

◦ C.

We discuss this main case in detail, as the results for the other ex-

periments were similar. The maximum temperature overshoot is always 

below 2 

◦ C. Therefore, the overload operation with dynamic ramping 

constraints is shown to be experimentally feasible for our test bench. If

Fig. 9. Electricity price, electric power 𝑃 , and temperature 𝑇 for the dynamic ramping case with turn off and dynamic feed-forward control (Experiment 𝐷𝑅 

𝑤𝑖𝑡ℎ 𝑜𝑓 𝑓
𝐷𝐹 𝐹

1, Table 1). The black curves show the simulation (sim) and the red curves the experiment (exp). Moreover, the simulated benchmark case is shown with blue dashed 

lines.
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Fig. 10. Trajectory of the process parameters 𝑗 𝑒𝑙 

, 𝑈 𝑐𝑒𝑙𝑙 

, 𝑝 O 2 

and 𝑝 H 2
during operation in dynamic ramping case with turn off and dynamic feed-forward control

(Experiment 𝐷𝑅 

𝑤𝑖𝑡ℎ 𝑜𝑓 𝑓
𝐷𝐹 𝐹 1, Table 1).

a short overshoot above the maximum temperature of 80 

◦ C is critical, 

it might be necessary to add a back-off constraint for safety.

Furthermore, Fig. 10 illustrates the progression of additional pro-

cess parameters during the dynamic ramping case with turn off and 

dynamic feed-forward control (Experiment 𝐷𝑅 

𝑤𝑖𝑡ℎ 𝑜𝑓 𝑓
𝐷𝐹 𝐹 1, Table 1). The

values displayed for 𝑈 𝑐𝑒𝑙𝑙 

and 𝑗𝑒𝑙 in the upper part, represent the average 

measurements across both stacks. When load is turned off, the cell volt-

age follows a characteristic trajectory; if the load remains on, 𝑈 𝑐𝑒𝑙𝑙 

stays 

above the electrochemical decomposition voltage of water. The lower 

section of Fig. 10 shows the pressure on the anode and cathode side. 

The set-points are defined to 𝑝 O 2 

= 4 bar and 𝑝 H 2 

= 5 bar.

5.2. Cost comparison

Whereas the previous section shows that an overload operation with 

dynamic temperature ramping is feasible, we analyze the economic 

advantage in this section. Based on the simulations, we predict a sub-

stantial cost reduction between the benchmark and dynamic ramping 

methods. We always express the costs relative to a constant operation 

at a nominal production rate 𝑛̇ 

𝑛𝑜𝑚 

H 2
. Note that in all variants the amount 

of hydrogen produced over the time horizon equals 𝑛̇ 

𝑛𝑜𝑚
H 2

(𝑡 𝑓 − 𝑡 0 

) (com-

pare to Eq. Pd). In the benchmark case, i.e., without making use of 

temperature dynamics, costs are reduced 12.3 % compared to constant 

operation (Fig. 11). If the electrolyzer is allowed to be turned off, cost 

reductions increase to 13.0 %. Using dynamic ramping, as discussed 

in the previous section, increases the cost reductions to 16.3 % (with-

out turning off) and 16.8 % (with turning off). That is, the simulations 

show a reduction in cost by dynamic ramping constraints of 3 % and 

3.8 %.

We use the experiments to compare the production costs predicted by 

simulations with the measured cost reductions. The seven experiments 

agree well with the simulated costs (compare red crosses in Fig. 11 to 

gray bars). On average, the experimental cost reduction is 0.6 % lower 

than the simulation, which is a slight difference compared to the differ-

ence between the dynamic ramping method and benchmark (3 % and 

3.8 % as discussed above).

Fig. 11. Cost reduction compared to steady-state operation for different cases. 

The seven experiments from Table 1 are indicated with red crosses.

These findings provide compelling experimental validation of the 

economic benefits of dynamic ramping constraints, confirming their po-

tential for improving the cost efficiency of PEM electrolyzer operation 

under fluctuating electricity market conditions.

5.3. Performance of different controllers

In this section, we compare the different control schemes introduced 

in Section 3.3. We perform this comparison for the scheduling that does 

not turn the electrolyzer off because the resulting schedule requires a 

jump in the simulated cooling power at the beginning of the third quarter

of every hour (see Fig. 12 and Figs. 20–22 in the Appendix). This jump 

in cooling power is caused by the reduction of electric power from 50 

to 36 kW while the temperature set-point remains constant. Therefore, 

the cooling power can be reduced.
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Fig. 12. Comparison of static feed-forward (FF) control, dynamic FF control, and no FF control, showing power, temperature, and cooling power 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 for simulation 

(sim) and experiment (exp.). The case consists of dynamic ramping without turn-off (experiments 𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓 

𝐷𝐹 𝐹 

, 𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓
𝑃𝐼𝐷 and 𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓
𝑆𝐹𝐹 in Table 1). The full profiles for

the experiments are shown in the Appendix.

In the two feed-forward control schemes, this jump in the cool-

ing power is anticipated (Fig. 12, left and middle). With the pure PID 

control, however, the cooling power only reacts after the temperature 

deviates substantially from the set-point (Fig. 12, right). Thus, a feed-

forward control exhibits advantages in tracking behavior for the stack 

temperature control when the electric power jumps. Improved tracking 

is also reflected in the Root Mean Square Error (RMSE). For a quanti-

tative comparison, Table 2 presents the RMSE values of the different 

control methods over the whole operation time of 6 h (Fig. 9) and 

for 10 min after power drops from 50 to 36 kW (Fig. 12). In the first 

10 min after power drops, the RMSE is 1.18 K with the pure PID con-

trol, while it is only 0.61 K with dynamic feed-forward and 0.58 K 

with static feed-forward control. Thus, anticipating the jump in cool-

ing power allows a closer temperature tracking. Over the complete 

6 h-time-horizon, the RMSE is 0.23 K higher for the Pure PID con-

trol (2.01 K instead of 1.78 or 1.77, compare to Table 2). Thus, as 

the addition of feed-forward control results in improved tracking be-

havior. The dynamic ramping scheduling optimization method is only 

as good as the performance of the underlying control method allows. 

Thus, the whole algorithm is highly dependent on the quality of the 

control method and a feed-forward control can be recommended based 

on our results. Especially, as applying the dynamic ramping method 

requires a dynamic temperature model anyhow, and with this model, 

implementing a feed-forward control is straightforward. In a case with 

very high dynamic load variations, such as wind and photovoltaics, the 

effect of the feed-forward control might be even stronger. Between the 

two feed-forward controls studied, we do not see substantial differences 

(Table 2).

Table 2

RMSE control methods.

Case RMSE [K]

Approach Turn off Control 6 h 10 min

Dynamic ramping No Static feed-forward 1.77 0.58

Dynamic amping No Dynamic feed-forward 1.78 0.61

Dynamic ramping No Pure PID 2.01 1.18

Overall, feed-forward control significantly improves temperature 

tracking performance in dynamic ramping scheduling, particularly dur-

ing power transitions, making it the preferred control strategy for PEM 

electrolyzers operating under fluctuating load conditions.

5.4. Evaluation of the temperature model

The performance of our dynamic ramping constraints depends on the 

accuracy of the underlying temperature model. As discussed above, the 

temperature set-point can be tracked effectively. This section compares

the cooling power 

̇ 𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

between simulation and experiment. Looking

at a specific point in time model and experiment differ (cf. Figs. 20–22). 

These differences can be explained by disturbances acting on the plant, 

such as freshwater injection, which is explained in detail in Section 5.1.

To compare the overall cooling, we compare the integral over the 

cooling power 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 between simulation and experiment. The overall 

cooling energy was between 0.5 % and 8.1 % smaller in the experi-

ments compared to the simulations (Table 3). Thus, our model slightly 

overestimates the cooling energy needed. This overestimation could be 

explained by the fact that we assume a constant ambient temperature 

of 25 

◦ C, whereas the temperature in the experimental hall varies and is 

below 25 

◦ C most of the time. The fact that our model overestimates the 

required cooling energy might be one reason why the dynamic ramping 

approach works well experimentally: The overestimation of the required 

cooling power gives the underlying controller some leeway to reject 

disturbances. If dynamic ramping is applied with a temperature model 

that underestimates the required cooling energy, additional backup con-

straints might be needed to ensure that the controller can track the 

temperature set-point.

5.5. Simulative study on upscaling

As discussed above, our 100 kW test bench shows relatively fast tem-

perature dynamics. In this section, we compare the advantages of the 

dynamic ramping method over the benchmark between the 100 kW test 

bench and a 2 MW electrolyzer in a simulation study. To do so, we use 

values for the thermal mass and heat transfer coefficient from Ref. [45]. 

The thermal mass increases from 𝐶 100kW = 3.00 ⋅ 10 

5 J/K to 𝐶 2MW 

=
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Table 3 

Comparison of the integrated cooling power ∫ 𝑡 

𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑑𝑡 between simulation and experiments for the seven conducted

experiments (compare to Table 1).

Case ∫ 𝑡
̇ 𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

𝑑𝑡 [kWh] Deviation [%]

Approach Turn off Control Simulation Experiment

Dynamic ramping Yes Dynamic feed-forward 18.48 17.71 4.1

Dynamic ramping Yes Dynamic feed-forward 18.48 17.23 6.7

Benchmark No Dynamic feed-forward 11.57 11.51 0.5

Benchmark No Pure PID 11.57 10.63 8.1

Dynamic ramping No Dynamic feed-forward 14.17 13.15 7.1

Dynamic ramping No Pure PID 14.17 13.51 4.6

Dynamic ramping No Static feed-forward 14.17 13.20 6.8

Fig. 13. Cost reduction in % relative to constant production, normalized over 

the electricity price spread 𝑝 max 

and minimum 𝑝 min 

. Simulation results compare 

dynamic ramping and benchmark methods for a 100 kW test bench and a 2 MW 

electrolyzer, considering differences in thermal mass and heat transfer. Larger 

electrolyzers with slower dynamics achieve greater cost savings with dynamic 

ramping.

1.30 ⋅ 107 

 J/K and the heat transfer resistance from 𝑅 W/K𝐻 𝑇100kW
= 77.5 

to 𝑅 𝐻𝑇2  

 

= 847 W/K.
MW

Furthermore, we adapt our generic electricity price profile and main-

tain the staircase profile but vary the price spread between the maximum 

and minimum electricity price between 1.2 and 4.

As the 2 MW electrolyzer has slower dynamics, the improvement 

of the dynamic ramping method compared to the benchmark is higher 

compared to the 100 kW electrolyzer for every price spread, e.g., or a 

price spread of 2, the improvement is 2 % instead of 1 % (Fig. 13). Thus, 

our dynamic ramping approach might offer even higher cost reductions 

for electrolyzers with higher power.

6. Discussion on aging and overload

We performed our experiments within a few days, during which the 

characteristics of our electrolyzer remained roughly constant. However, 

over the course of the electrolysis cell’s lifetime, substantial ageing takes 

place within it. This aging can be recognized by an increase in cell volt-

age. Here, we briefly discuss two known aging phenomena to obtain an 

overview: On the one hand, corrosion within the cell leads to aging ef-

fects. These corrosion phenomena are strongly related to high electrical 

potential on the anode side [47,48]. On the other hand, the aging mech-

anism depends on ionic contaminants, which poison the membrane and 

electrode layers. The origin of these ions is, e.g., metal bipolar plates, 

sealing gaskets, or feed water that enters the system [47,49]. With these 

degradation effects, the electric conductivity inside the cell decreases 

such that for a constant electrical current, the cell voltage increases. 

Fig. 4 in Section 2.2.1 has previously demonstrated the impact of aging 

on the cell voltage of the 100 kW PEM electrolyzer, showing a maxi-

mum increase of Δ𝑈 𝑎𝑔𝑒 

= 0.05 V at high power densities. To address

these degradation effects, the model of 𝑈 𝑐𝑒𝑙𝑙 

presented in Eq. (4) was 

adapted using Eq. (6). The parameters 𝑎 1 

and 𝑎 2 were applied to target 

𝑈 𝑜ℎ𝑚 

and 𝜂 𝑎𝑐𝑡 

of 𝑈 𝑐𝑒𝑙𝑙, as these terms depend on material properties and 

therefore capture aging effects. However, a specific correlation between 

aging and the individual model parameters, such as the charge transfer 

coefficient, along with the associated aging processes, was not further 

pursued in this context. To ensure that the algorithm can accommodate 

aging effects, including an increase in cell voltage, the parameters 𝑎 1 

and 𝑎 2 

must be progressively adjusted over time.

To represent a time dependent value the progressive aging of the PEM 

stack is described as a cell voltage increase per hour of operation (µV∕h). 
Values from 2.5 to 20 µV∕h can be found in the literature [49–51]. Such 

aging in PEM electrolysis has an effect on our algorithm. As the hy-

drogen produced is mainly dependent on the current density, this leads 

to the conclusion that the input power to the PEM electrolysis process 

increases for a given production rate. In other words, an increased in-

put power is needed for the same output power, i.e., the efficiency of 

the electrolyzer decreases. Therefore, the existing electrolyzer must be-

come warmer over the existing operating range due to the increased 

input power with the same output power. Eq. (7) from Section 2.2.3 

outlines this relationship: If 
∑ 

𝑘 

̇ 𝑄 𝑘 

increases, a temperature change

is taking place. Consequently, this leads to an increased demand for 

cooling power during operation.

There are two ways to address aging in electrolyzers, visualized in 

Fig. 14: First, the cooling capacity of the electrolyzer can be initially de-

signed to be higher. For our experiment, the maximum cooling power

was determined to 𝑄̇ 

max
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 3.6 kW, as represented by the blue curve in 

Fig. 14 (upper part). Utilizing this cooling capacity, the maximal possi-

ble power and temperature with our aging are 𝑃 

max,steady = 50.3 kW 

and 𝑇 

max 

𝑆𝑡𝑎𝑐𝑘 = 80 

◦ C (compare to Section 2.3). However, with a volt-

age increase due to aging Δ𝑈 𝑎𝑔𝑒 

, the maximum steady-state power

𝑃 

max,steady constantly reduces. The orange curve in Fig. 14 (upper part)

represents a higher cooling power of 𝑄̇ 

max
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 5.4 kW for the same 

conditions, which initially leads to a higher possible power. With an 

aging of Δ𝑈 𝑎𝑔𝑒 

= 0.1 V, the maximum feasible steady-state power is 

again 𝑃 

max,steady = 50.3 kW. Thus, even with a higher cooling capacity 

the same maximum steady-state power is reached due to aging after a 

given amount of operating hours. With the given degradation rate of 

2.5–20 µV∕h, Fig. 14(lower part) illustrates the achievable operational 

hours under specified conditions. In our scenario, feasible operational 

durations range from 5.000 to 40.000 h until the maximum power out-

put, 𝑃 

max,steady = 50.3 kW, is attained. Overall, realizing a higher cooling 

power results in increased investment costs but has the advantage of al-

lowing the electrolyzer to operate under higher power in steady state, 

even given progressive aging.

On the other hand, the cooling capacity can be designed to meet

the initial cooling requirements of the electrolyzer 𝑄̇ 

max
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 3.6 kW, 

shown in the blue curve in Fig. 14(upper part). This approach has lower 

investment costs. However, a primary disadvantage is that the algo-

rithm’s limits must be periodically adjusted to account for the decline 

in the maximum feasible steady-state power. Moreover, the periods of 

overload, which require higher cooling capacity, will be shorter.
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Fig. 14. Maximum steady-state-feasible power 𝑃 

max,steady at 𝑇 

max = 80 

◦ C as a 

function of voltage increase due to aging Δ𝑈 𝑎𝑔𝑒 for different cooling powers 

𝑄̇ 

max
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (upper part). Corresponding operating hours for a given aging rate.

From an economic perspective, both options must be weighed against 

each other in order to make an informed assessment. However, this eval-

uation is challenging and cannot be generalized, as various factors, such 

as the extraction of thermal energy or accelerated aging, play signifi-

cant roles in later applications. While the most effective approach cannot 

be conclusively determined within the scope of this work, the dynamic 

ramping limits can be successively adapted to the aged stack by up-

dating the underlying electrolyzer model. Thus, if overload operation 

is promising in one period of the electrolyzer’s lifetime, our dynamic 

ramping approach can be applied.

In addition to the possibility of adjusting the algorithm during the 

aging process, the question arises as to whether the existing overload 

operation accelerates degradation. With the developed dynamic ramp-

ing approach, electrolyzers are operated under overload conditions for a 

certain period of time. With a normal operation range of 0.5–2.5 A∕cm 

2 

[52], overload conditions can be considered to occur at current densities 

exceeding 2.5 A∕cm 

2 . This overload condition can result in an accel-

erated rate of cell degradation compared to nominal load conditions 

[49,52–54]. With respect to Section 1, various manufacturers, however, 

allow overload operation for a certain period of time. As stated pre-

viously, a time-dependent value for degradation is described as a cell 

voltage increase per hour of operation (µV∕h). Eq. (20) defines the corre-

lation between current density 𝑗 𝑒𝑙 

and the degradation rate 𝐷 𝑟𝑎𝑡𝑒 

(µV∕h), 
describing the functional dependence of degradation on the applied 

current density:

𝐷 𝑟𝑎𝑡𝑒 

= 𝑓
(

𝑗𝑒𝑙
) 

(20)

In [55], a PEM single cell with an active area of 30.624 cm 

2 was eval-

uated at 80 

◦ C under accelerated stress test conditions. The degradation

Fig. 15. Degradation rate µV∕h depending on the current density A∕cm 

2 up to

overload of 3 A∕cm 

2 ; data derived from Su et al. [55].

rates at current densities of 1, 2, and 3 A∕cm 

2 were determined to be 

22.7, 26.1, and 50 µV∕h, respectively, over a 600-h operational period. 

This relationship is graphically depicted in Fig. 15.

In the used aging model [55], the degradation rate increases for 

current densities exceeding 2 A∕cm 

2 . Based on this, we conducted an 

analysis of our dynamic ramping method to assess whether higher degra-

dation rates occur or if operating under overload conditions for a certain 

period of time is permissible. For this, we analyzed two distinct sce-

narios. The first scenario used a current density trajectory of dynamic 

ramping and benchmark case without turn-off (Fig. 16(a)). The sec-

ond scenario used a current density trajectory of dynamic ramping 

and benchmark case with turn-off (Fig. 16(b)). For these scenarios, the 

current density was adjusted to the range for overload conditions.

In Section 3.2.1 with Eq. (Pd), it was defined that the nominal hy-

drogen production 𝑛 

𝑛𝑜𝑚
H 2
for each scenario has the same amount over

the given time horizon 

[ 

𝑡 0 

, 𝑡 𝑓 

] 

, to ensure the comparability of all re-

sults in relation to cost reduction. Based on Faraday’s law, Eq. (8) in 

Section 2.2.3, the integral of the current density for the benchmark ap-

proach, 𝑗 𝑒𝑙−𝐵𝑀 

, and the dynamic ramping approach, 𝑗 𝑒𝑙−𝐷𝑅 

, must be 

equal to the nominal current density, 𝑗𝑛𝑜𝑚𝑒𝑙 , over a given time horizon 

[ 

𝑡 0, 𝑡 𝑓 

] 

. This relationship is expressed in Eq. (21).

∫

𝑡 𝑓

𝑡0
𝑗 𝑒𝑙−𝐵𝑀 

(𝑡)𝑑𝑡 = ∫

𝑡 𝑓

𝑡0
𝑗 𝑒𝑙−𝐷𝑅(𝑡)𝑑𝑡 = 𝑗𝑛𝑜𝑚𝑒𝑙 (𝑡 𝑓 

− 𝑡 0 

) (21)

Applying these integrals to our two scenarios revealed the equality of 

the nominal current density 𝑗𝑛𝑜𝑚𝑒𝑙 in both methods, as illustrated in Fig. 16

by the dotted lines. The degradation derived from Fig. 15, along with the 

trajectories of the two scenarios from Fig. 16 was utilized to calculate

the nominal degradation rate 𝐷 

𝑛𝑜𝑚 

𝑟𝑎𝑡𝑒 over the defined time horizon 

[ 

𝑡 0, 𝑡 𝑓 

] 

,

as expressed in Eq. (22). This approach enabled a comparative analysis 

of the dynamic ramping and benchmark case in terms of degradation.

∫

𝑡 𝑓

𝑡0
𝐷 𝑟𝑎𝑡𝑒 

(𝑗 𝑒𝑙 

(𝑡))𝑑𝑡 = 𝐷 

𝑛𝑜𝑚
𝑟𝑎𝑡𝑒(𝑡 𝑓 

− 𝑡 0) (22)

In Fig. 17, the degradation rates for both scenarios, related to the 

current densities, are illustrated. It can be directly seen that the nomi-

nal degradation rate 𝐷 

𝑛𝑜𝑚 

𝑟𝑎𝑡𝑒 of the benchmark is slightly higher than the

dynamic ramping method in both scenarios, indicated by the dotted 

lines.

Examining Table 4, it becomes evident that the nominal degradation 

rate of the benchmark approach with no turn-off is approximately 1 % 

higher. With turning off the current density, the nominal degradation 

rate of the benchmark approach is even higher at approximately 2 % 

compared to the dynamic ramping method.

That means in both scenarios—no turn-off and turn-off—a higher 

degradation rate is observed for the benchmark approach. A closer ex-

amination reveals a possible explanation: while the dynamic ramping 

method periodically operates at lower current densities, the benchmark 

approach remains at higher current densities for extended periods, lead-

ing to additional degradation. Overall, the nominal degradation rate
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Fig. 16. (a) Trajectory current density of dynamic ramping and benchmark approach (no turn-off) and (b) Trajectory current density of dynamic ramping and 

benchmark approach (turn-off).

Fig. 17. (a) Trajectory degradation rate of dynamic ramping and benchmark (no turn-off); (b) trajectory degradation rate of dynamic ramping and benchmark 

(turn-off).

Table 4

Comparison of the nominal degradation rate 𝐷 

𝑛𝑜𝑚
𝑟𝑎𝑡𝑒 between Dynamic ramping

and Benchmark approach for the two defined scenarios (compare to Fig. 17).

Scenario 𝐷 

𝑛𝑜𝑚
𝑟𝑎𝑡𝑒 [µV∕h] Deviation [%]

Dynamic ramping Benchmark

𝑗 𝑒𝑙 Trajectory no turn-off 35.79 36.17 1.04

𝑗 𝑒𝑙 Trajectory trun-off 33.64 34.32 2.03

behaves similarly for both approaches, indicating that no additional ag-

ing is expected due to operation under overload conditions for a certain 

period of time.

But nevertheless, not only the high current densities affect degrada-

tion. PEM electrolyzers normally operate in the temperature range of 

50–80 

◦ C [56,57]. If temperature gets too low, higher membrane resis-

tances can arise, which can cause long-term thermal and electrochemical 

stress due to overpotential on the membrane [58,59]. However, temper-

atures above the defined range cause much more trouble because they 

increase the rate of electrochemical reactions, which leads to changes in 

the membrane, catalyst, and bipolar plates [57,58]. In our experiments, 

the PEM-Stack temperature consistently exceeds 55 

◦ C, with minimum 

temperatures reaching approximately 60 

◦ C when the load remains ac-

tive. Additionally, in our experiments, the temperature never surpassed 

80 

◦ C. These conditions ensured that the system operated within the 

targeted temperature range, leading to the assumption that no signif-

icant aging effects would occur. However, not only do high and low 

stack temperatures have an influence, it is also important to consider 

that continuous temperature fluctuations may also influence the struc-

tural integrity and performance of key components, such as membrane 

materials and catalysts. Variations in operating temperature can induce 

mechanical stress, chemical degradation, or changes in reaction kinet-

ics, potentially leading to reduced efficiency over time. These effects 

could also compromise the long-term stability of the system. As previ-

ously described, our method allows for an active modification of the

temperature trajectory, providing the capability to dynamically control 

the temperature if it deviates from the desired range. This demonstrates 

the robustness of our method against degradation and offers a more 

comprehensive analysis of electrolyzer performance under dynamic load 

conditions.

However, aging remains a subject of ongoing research, as not all 

degradation mechanisms are yet fully understood. In addition to en-

sure that the electrolyzer operates under optimal conditions to mitigate 

electrochemical, mechanical, and thermal stress, it is essential to pur-

sue advancements in material science aimed at improving membrane 

and catalyst properties. Furthermore, operational parameters can be dy-

namically adjusted in response to aging through the implementation 

of predictive operating strategies and advanced control mechanisms. 

This remains a critical challenge for the large-scale commercialization 

of PEM electrolysis and represents a key area requiring further re-

search and development. Nevertheless, we emphasize that we employed 

a literature-based model, and the observed aging was even lower than 

expected.

7. Conclusions

Through the use of renewable energy sources such as wind power and 

solar photovoltaics, fluctuating electricity prices are expected, which 

makes demand response through flexible production promising for elec-

trolyzers. Our results experimentally demonstrate that the dynamic 

ramping concept increases flexibility through overload operation for 

electrolyzers with slow temperature dynamics. The experiments high-

lighted a notable 3.8 % reduction in costs compared to the benchmark 

without overload operation. At the same time, the PEM electrolyzer 

model exhibits only a 0.6 % deviation in costs from the experimental 

results, and the needed cooling power was only slightly overestimated.

The employed two-layer approach with scheduling and control al-

lows the rejection of non-modeled disturbances and tracks the scheduled 

temperature profile well. In the control layer, a feed-forward scheme was 

found to be advantageous compared to a pure tracking control when the 

electric current performs a step change.
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Expanding our simulations to a 2 MW scale electrolyzer revealed 

even greater cost reductions with the dynamic ramping method, ow-

ing to the slower dynamics of the larger electrolyzer. Consequently, our 

dynamic ramping approach promises to reduce costs through demand 

response, particularly for electrolyzers with higher power capacities.

The main contributions of this publication lie in the experimental val-

idation of the dynamic ramping approach and the development and ex-

perimental validation of suitable feed-forward controllers. Moreover, we 

discuss potential degradation effects due to overload and flexible tem-

perature conditions. The dynamic ramping and benchmark approaches 

show similar nominal degradation rates, with no major increase un-

der short-term overloads. Notably, dynamic ramping offers a slight 

benefit by reducing overload-induced aging, enhancing overall system 

resilience. In case of flexible temperature conditions our experiments 

ensured operation within the optimal 55–80 

◦ C range, minimizing ag-

ing effects. Furthermore, our method allows for active stack temperature 

control, further enhancing system stability and reliability. In addition, 

we demonstrate and discuss the necessary adaptations of the underlying 

model to aging, which cannot be totally avoided for PEM-electrolyzers. 

However, the mechanisms driving aging in PEM electrolyzers remain the 

focus of ongoing and in-depth scientific research.
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Appendix 

Dynamic ramping constraints for electrolyzers

In this section, we summarize the reformulation of dynamic ramping 

constraints for electrolyzers in accordance with our previous publication 

[31,32]. For electrolyzers with slow temperature dynamics, the refor-

mulation is based on a few assumptions regarding the model’s structure, 

which are typically true (e.g., compare to [22,30,60,61]) and also hold 

for our test bench model, which reasonably models the operation. These 

structural assumptions are visualized on the left-hand side of Fig. 18. 

We assume that the system has two degrees of freedom: the electric 

current density 𝑗 𝑒𝑙 and a cooling input; ̇ 𝑄 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

in our case. Note that

we hold the pressures 𝑝 H 2 

, 𝑝 O 2 

constant during operation. Furthermore,

we assume that the temperature dynamics are the only dynamics slow 

enough to be relevant on the scheduling-relevant time scale typically 

dictated by energy price intervals, e.g., 1 h or 15 min. Thus, the temper-

ature 𝑇 𝑆𝑡𝑎𝑐𝑘 

is the only differential state of the model, where the time

derivative 𝑇̇ 𝑆𝑡𝑎𝑐𝑘 is a nonlinear function of the two inputs and the current

temperature:

𝑇̇ 𝑆𝑡𝑎𝑐𝑘 = 𝑓
(

𝑇𝑆𝑡𝑎𝑐𝑘, 𝑗 𝑒𝑙 

, 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

)

(23)

The other two scheduling-relevant model outputs are the product flow of 

hydrogen 𝑛̇ H 2
, and the electric input power 𝑃 𝑒𝑙 

, which essentially dictates 

the electricity costs.

Table 5 

Model parameters.

Value Unit Interpretation

𝑁 𝑐𝑒𝑙𝑙 54 cm 

2 Active cell surface

𝐴 𝑐𝑒𝑙𝑙 300 – Number of cells

𝐹 96.485 As∕mol Faraday constant

𝑎 1 0.995 – Empiric parameter

𝑅 𝑚𝑒𝑚 0.120 Ω Membrane resistance

𝑅 𝑐𝑜𝑛 0.096 Ω Membrane resistance

𝑅 𝑔𝑎𝑠 8.314 J∕mol K Gas constant

𝑗 0 0.00000012 A∕cm 

2 Exchange current density 

𝛼 0.024 V Charge transfer coefficient 

𝑀 H 2O 18.015 g∕mol Molar mass water

𝑑 1 

−0.044 kJ∕mol K Vaporization slope (0..100 

◦ C)

𝑑 2 

57.07 kJ∕mol Vaporization constant (0..100 ◦ C)

𝐷 1.9 mol∕mol H 

+ Drag factor

Δ𝐻 𝐻𝐻𝑉 ,H 2
20 J∕mol Higher heating value hydrogen

𝑅 𝐻𝑇100kW
77.5 W∕K Heat transfer resistance 100 kW

electrolyzer 

𝑅 𝐻𝑇2MW
847 W∕K Heat transfer resistance 2 MW

electrolyzer 

𝑇 𝑠𝑢𝑟𝑟 25 ◦ C Surrounding temperature

𝐶 100kW 3.00 ⋅ 10 

5 J∕K Thermal mass 100 kW electrolyzer

𝐶 2MW 1.30 ⋅ 10 

7 J∕K Thermal mass 2 MW electrolyzer

Table 6 

Specification stack 100 kW PEM electrolyzer.

Specification Value Unit Stack image

Number cells 27 

Maximal power 6 W∕cm 

2 

Coating cathode side Platinum 0.940 mg∕cm 

2 

Coating anode side Iridium 2.610 mg∕cm 

2 

Membrane Nafion 117 

Cell area 300 cm 

2

Bipolar plates Metal

Table 7 

Operating conditions 100 kW PEM electrolyzer.

Specification Value Unit

Cell voltage

Current density

Pressure anode

Pressure cathode

Temperature

Specific volume flow anode

Specific volume flow cathode

𝑈𝑐 𝑒𝑙𝑙
𝑗 𝑒𝑙
𝑝 O 2

𝑝 H 2

𝑇 𝑆𝑡𝑎𝑐𝑘
𝑉̇𝑎𝑛𝑜𝑑 𝑒
𝑉̇𝑐 𝑎𝑡ℎ𝑜𝑑𝑒

0 ..2 

0 ..3 

0 ..50 

0 ..50 

20 ..85 

0 ..10 

0 ..10 

V

A∕cm2 
bar
bar
◦ C
ml∕min cm2 
ml∕min cm2 

Table 8 

Parameter adaptive PID control.

Operation condition 𝐾𝐶 𝑇 (min)𝑁  𝑇 (min)𝑉

0 < 𝑗 ≤ 0.5 

◦A cm𝑒𝑙 ∕ 2
 ∧ 75  

 C < 𝑇 𝑆𝑡𝑎𝑐𝑘
0.5 2

 < 𝑗𝑒𝑙 ≤ 1 A∕cm ∧ 75 

◦ C  

 

< 𝑇 𝑆𝑡𝑎𝑐𝑘
1 < 𝑗 ≤ 1.5𝑒𝑙  A∕cm2 ∧ 75 

◦ C < 𝑇 𝑆𝑡𝑎𝑐𝑘
1.5 < 𝑗𝑒𝑙 A∕cm2 ∧  

 75 

◦C < 𝑇 𝑆𝑡𝑎𝑐𝑘

65.78

52.63

35.08

25.06

87.71

87.71

87.71

87.71

0.84

0.84

0.84

1.26

Fig. 18. Original nonlinear model (left) and reformulation with piecewise affine 

(PWA) function and dynamic ramping constraint (right).
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The concept of dynamic ramping constraints is to use scheduling-

relevant outputs for hydrogen production 𝑛̇ H 2 

and temperature-

derivative 𝑇̇ 𝑆𝑡𝑎𝑐𝑘 as degrees of freedom during the scheduling optimiza-

tion (right-hand part of Fig. 18). This change in the degrees of freedom 

is possible because of the underlying control layer: If scheduling passes 

feasible trajectories for the outputs 𝑛̇ H 2 

, 𝑇̇ 𝑆𝑡𝑎𝑐𝑘 as set-points, the under-

lying control can choose the physical inputs 𝑗 𝑒𝑙 

, 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 to realize the

set-point trajectories. However, the control inputs 𝑗 𝑒𝑙 

, 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 have upper 

and lower bounds, which cannot be enforced in a straightforward way 

to the reformulated model, as these variables are not present anymore 

(right-hand part of Fig. 18). For the current density 𝑗 𝑒𝑙 

, this issue can still

be resolved rigorously as the hydrogen production 𝑛̇ H 2 

is proportional 

to the current density 𝑗 𝑒𝑙 

and so the limits of the current density 𝑗 𝑒𝑙
can be translated into limits on the hydrogen production 𝑛̇ H 2 

. However,

the cooling power 𝑄̇ 

 

 

does not translate linearly to the𝑐𝑜𝑛𝑡𝑟𝑜𝑙   tempera-

ture derivative 𝑇̇𝑆 and,𝑡𝑎𝑐𝑘  additionally, depends on the current density

𝑗 (or𝑒𝑙  hydrogen production 𝑛̇  

 H2 
) and temperature 𝑇𝑆 . Thus, the up-𝑡𝑎𝑐𝑘    

 

per and lower bound of 𝑄̇ 

 𝑐 convert𝑜𝑛𝑡𝑟𝑜𝑙  

 

into minimum and maximum

temperature derivatives min max
 𝑇̇ , ̇

𝑆𝑡𝑎𝑐𝑘 

𝑇𝑆 ,𝑡𝑎𝑐𝑘  which are nonlinear functions of

production and temperature:

𝑇̇ 

min
𝑆𝑡𝑎𝑐𝑘(𝑛̇ H 2 

, 𝑇 𝑆𝑡𝑎𝑐𝑘) ≤ 𝑇̇ 𝑆𝑡𝑎𝑐𝑘 

≤ 𝑇̇ 

max
𝑆𝑡𝑎𝑐𝑘 

(𝑛̇ H 2
, 𝑇 𝑆𝑡𝑎𝑐𝑘) (24) 

As these functions 𝑇̇min
 , ̇
𝑆𝑡𝑎𝑐𝑘 

𝑇max
𝑆 , limit how fast the temperature can be𝑡𝑎𝑐𝑘   

ramped, they are called dynamic ramping limits.

The dynamic ramping limits for our test bench are shown in 

Fig. 19(a). To model these nonlinear constraints by a PWA approxima-

tion, we chose ten PWA segments in 𝑛̇ H 2
(Fig. 19(b)). As in previous 

work [31,32], we approximate the ramping limits as being linear with

Fig. 19. Dynamic ramping limits for the analyzed electrolyzer: (a) Minimum achievable temperature derivative 𝑇̇ 

min
𝑆𝑡𝑎𝑐𝑘 and maximum achievable temperature derivative 

𝑇̇ 

max
𝑆𝑡𝑎𝑐𝑘 as a function of temperature    𝑇 𝑆𝑡𝑎𝑐𝑘 and hydrogen production rate 𝑛̇ H 2 

. (b) Comparison of nonlinear dynamic ramping limits and PWA approximation for a

temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 of 80 

◦ C.

Fig. 20. Evaluation of the dynamic feed-forward control scheme comparing power, temperature, and cooling power 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 between simulation (sim) and experiment

(exp.). The case comprises dynamic ramping without turn off (Experiment 𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓
𝐷𝐹 𝐹 in Table 1).
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Fig. 21. Evaluation without a feed-forward control scheme comparing power, temperature, and cooling power 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 between simulation (sim) and experiment

(exp.). The case comprises dynamic ramping without turn off (Experiment 𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓
𝑃𝐼𝐷 in Table 1).

Fig. 22. Evaluation of the static feed-forward control scheme comparing power, temperature, and cooling power 𝑄̇ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 between simulation (sim) and experiment

(exp.). The case comprises dynamic ramping without turn off (Experiment 𝐷𝑅 

𝑛𝑜 𝑜𝑓 𝑓
𝑆𝐹𝐹 in Table 1).

the temperature 𝑇 𝑆𝑡𝑎𝑐𝑘 

, as the temperature dependency is mostly given 

by convective temperature losses to the ambient, which can be assumed 

to be proportional to the difference between the electrolyzer and ambi-

ent temperature. In principle, many multi-variate regression methods, 

e.g., hinging hyperplanes [62–64], convex region surrogates [65,66], or 

artificial neural networks with ReLu activation functions [67,68] could 

be used here to find PWA approximations.

Data availability

Data will be made available on request.
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