001     1042604
005     20250521202232.0
024 7 _ |a 10.1051/bioconf/202412910037
|2 doi
024 7 _ |a 2117-4458
|2 ISSN
024 7 _ |a 2273-1709
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02590
|2 datacite_doi
037 _ _ |a FZJ-2025-02590
082 _ _ |a 570
100 1 _ |a Kazimi, Bashir
|0 P:(DE-Juel1)196697
|b 0
|u fzj
111 2 _ |a The 17th European Microscopy Congress 2024
|c Copenhagen
|d 2024-08-25 - 2024-08-30
|w Denmark
245 _ _ |a Comparative Analysis of Self-Supervised Learning Techniques for Electron Microscopy Images
260 _ _ |a Les Ulis
|c 2024
|b EDP Sciences
300 _ _ |a 202412910037
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1747804356_25144
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a BIO Web of Conferences
520 _ _ |a Deep learning has revolutionized a wide array of tasks across differentdomains, including electron microscopy (EM) image analysis, by leveraginglarge labeled datasets for training. However, the scarcity of such labeleddatasets in EM necessitates the exploration of alternative methods. Self-supervised learning (SSL) emerges as a promising approach to leverageunlabeled data, featuring techniques such as, e.g., masked image modeling(MIM) — which predicts missing parts of the input data, as well as contrastivelearning — which learns by distinguishing between similar and dissimilar pairsof data. This study aims to investigate the impact of these SSL techniques onEM images, providing a case study on the effectiveness of leveragingunlabeled data in a domain where labeled datasets are limited and expensiveto create.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1051/bioconf/202412910037
|g Vol. 129, p. 10037 -
|0 PERI:(DE-600)2673408-4
|p 10037 -
|v 129
|y 2024
|x 2117-4458
856 4 _ |u https://juser.fz-juelich.de/record/1042604/files/bioconf_emc2024_10037.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042604
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21