001     1042605
005     20250521202232.0
024 7 _ |a 10.1051/bioconf/202412910022
|2 doi
024 7 _ |a 2117-4458
|2 ISSN
024 7 _ |a 2273-1709
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02591
|2 datacite_doi
037 _ _ |a FZJ-2025-02591
082 _ _ |a 570
100 1 _ |a Ruzaeva, Karina
|0 P:(DE-Juel1)180323
|b 0
|u fzj
111 2 _ |a The 17th European Microscopy Congress 2024
|c Copenhagen
|d 2024-08-25 - 2024-08-30
|w Denmark
245 _ _ |a Unsupervised Machine Learning-based STEM diffraction pattern denoising for enhanced grain visualization in phase change materials
260 _ _ |a Les Ulis
|c 2024
|b EDP Sciences
300 _ _ |a 202412910022
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1747807496_17812
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a BIO Web of Conferences
520 _ _ |a Phase change materials (PCM) are an emerging class of materials in whichdifferent phases of the same material may have different optical, electric, ormagnetic properties and can be used as a phase change memory [1]. Phase-change memory materials, exemplified by (Ag, In)-doped Sb2Te (AIST) in thisresearch, have several advantages, including high-speed read and writeoperations, non-volatility, and a long lifespan [2]. PCMs are able to switchbetween amorphous and crystalline phases when subjected to heat orelectrical current. However, the full understanding of PCMs depends heavilyon accurate characterization, often through techniques such as scanningtransmission electron microscopy (STEM).
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Weber, Dieter
|0 P:(DE-Juel1)171370
|b 1
|u fzj
700 1 _ |a Werner, Jonas
|0 P:(DE-Juel1)162457
|b 2
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1051/bioconf/202412910022
|g Vol. 129, p. 10022 -
|0 PERI:(DE-600)2673408-4
|p 10022 -
|v 129
|y 2024
|x 2117-4458
856 4 _ |u https://juser.fz-juelich.de/record/1042605/files/bioconf_emc2024_10022.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042605
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180323
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171370
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21