001     1042642
005     20250526122859.0
024 7 _ |2 doi
|a 10.48550/ARXIV.2505.11394
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-02623
037 _ _ |a FZJ-2025-02623
041 _ _ |a English
100 1 _ |0 P:(DE-HGF)0
|a Oberstrass, Alexander
|b 0
|e Corresponding author
245 _ _ |a From Fibers to Cells: Fourier-Based Registration Enables Virtual Cresyl Violet Staining From 3D Polarized Light Imaging
260 _ _ |b arXiv
|c 2025
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1747889296_20947
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a Comprehensive assessment of the various aspects of the brain's microstructure requires the use of complementary imaging techniques. This includes measuring the spatial distribution of cell bodies (cytoarchitecture) and nerve fibers (myeloarchitecture). The gold standard for cytoarchitectonic analysis is light microscopic imaging of cell-body stained tissue sections. To reveal the 3D orientations of nerve fibers, 3D Polarized Light Imaging (3D-PLI) has been introduced as a reliable technique providing a resolution in the micrometer range while allowing processing of series of complete brain sections. 3D-PLI acquisition is label-free and allows subsequent staining of sections after measurement. By post-staining for cell bodies, a direct link between fiber- and cytoarchitecture can potentially be established within the same section. However, inevitable distortions introduced during the staining process make a nonlinear and cross-modal registration necessary in order to study the detailed relationships between cells and fibers in the images. In addition, the complexity of processing histological sections for post-staining only allows for a limited number of samples. In this work, we take advantage of deep learning methods for image-to-image translation to generate a virtual staining of 3D-PLI that is spatially aligned at the cellular level. In a supervised setting, we build on a unique dataset of brain sections, to which Cresyl violet staining has been applied after 3D-PLI measurement. To ensure high correspondence between both modalities, we address the misalignment of training data using Fourier-based registration methods. In this way, registration can be efficiently calculated during training for local image patches of target and predicted staining. We demonstrate that the proposed method enables prediction of a Cresyl violet staining from 3D-PLI, matching individual cell instances.
536 _ _ |0 G:(DE-HGF)POF4-5251
|a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|c POF4-525
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5254
|a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|c POF4-525
|f POF IV
|x 1
536 _ _ |0 G:(DE-HGF)InterLabs-0015
|a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|c InterLabs-0015
|x 2
536 _ _ |0 G:(DE-Juel1)JL SMHB-2021-2027
|a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|c JL SMHB-2021-2027
|x 3
536 _ _ |0 G:(EU-Grant)945539
|a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 4
536 _ _ |0 G:(EU-Grant)101147319
|a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 5
536 _ _ |0 G:(GEPRIS)313856816
|a DFG project G:(GEPRIS)313856816 - SPP 2041: Computational Connectomics (313856816)
|c 313856816
|x 6
588 _ _ |a Dataset connected to DataCite
650 _ 7 |2 Other
|a Image and Video Processing (eess.IV)
650 _ 7 |2 Other
|a Computer Vision and Pattern Recognition (cs.CV)
650 _ 7 |2 Other
|a FOS: Electrical engineering, electronic engineering, information engineering
650 _ 7 |2 Other
|a FOS: Computer and information sciences
700 1 _ |0 P:(DE-HGF)0
|a Vaca, Esteban
|b 1
700 1 _ |0 P:(DE-Juel1)177675
|a Upschulte, Eric
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)171512
|a Niu, Meiqi
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)131701
|a Palomero-Gallagher, Nicola
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)131642
|a Grässel, David
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)170068
|a Schiffer, Christian
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)131632
|a Axer, Markus
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)131631
|a Amunts, Katrin
|b 8
|u fzj
700 1 _ |0 P:(DE-Juel1)165746
|a Dickscheid, Timo
|b 9
|u fzj
773 _ _ |a 10.48550/arXiv.2505.11394
|t arXiv
|y 2025
856 4 _ |u https://arxiv.org/abs/2505.11394
856 4 _ |u https://juser.fz-juelich.de/record/1042642/files/Oberstrass_etal_2025_From_Fibre_Preprint.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1042642
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177675
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171512
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131701
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131642
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)170068
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131632
|a Forschungszentrum Jülich
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131631
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165746
|a Forschungszentrum Jülich
|b 9
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5251
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5254
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 1
914 1 _ |y 2025
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21