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ABSTRACT

Comprehensive assessment of the various aspects of the brain’s microstructure requires the
use of complementary imaging techniques. This includes measuring the spatial distribution
of cell bodies (cytoarchitecture) and nerve fibers (myeloarchitecture). The gold standard for
cytoarchitectonic analysis is light microscopic imaging of cell-body stained tissue sections.
To reveal the 3D orientations of nerve fibers, 3D Polarized Light Imaging (3D-PLI) has
been introduced as a reliable technique providing a resolution in the micrometer range while
allowing processing of series of complete brain sections. 3D-PLI acquisition is label-free
and allows subsequent staining of sections after 3D-PLI measurement. By post-staining for
cell bodies, a direct link between fiber- and cytoarchitecture can potentially be established
within one and the same section. However, inevitable distortions introduced during the
staining process make a costly nonlinear and cross-modal registration necessary in order
to study the detailed relationships between cells and fibers in the images. In addition, the
complexity of processing histological sections for post-staining only allows for a limited
number of samples. In this work, we take advantage of deep learning methods for image-
to-image translation to generate a virtual staining of 3D-PLI that is spatially aligned at the
cellular level. We use a supervised setting, building on a unique dataset of brain sections, to
which Cresyl violet staining has been applied after 3D-PLI measurement. To ensure a high
correspondence between both modalities, we address the misalignment of training data using
Fourier-based registration methods. In this way, registration can be efficiently calculated
during training for local image patches of target and predicted staining. We demonstrate that
the proposed method enables prediction of a Cresyl violet staining from 3D-PLI, matching
individual cell instances.

Keywords deep learning, virtual staining, fiber architecture, cytoarchitecture, polarized light imaging, Cresyl
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1 Introduction

To understand the organizational principles of the brain, complementary imaging techniques are used to
highlight different aspects of brain architecture. Two important aspects of the microstructural organization
are fiber- and cytoarchitecture (Nieuwenhuys, 2013; Amunts and Zilles, 2015). While cytoarchitecture
encompasses the spatial distribution and shape of cell bodies in the cerebral cortex and subcortical nuclei,
fiber architecture refers to the course and composition of nerve fibers. However, cytoarchitecture and fiber-
architecture are usually studied using different staining protocols, applied in different sections. Only a few
protocols are available to combine cyto- and fiber staining in a single protocol, e.g., Luxol fast blue (Kliiver
and Barrera, 1953), Bielschowsky (Bielschowsky, 1904) or the triple staining by Novotny (Novotny and and
Novotny, 1977) and Nowotny (2009). While they allow visualizing cell bodies and fibers in one and the same
section, they do not allow the tracing of axons and fiber bundles over long distances.

3D-Polarized Light Imaging (3D-PLI) addresses this limitation. It is a microscopic imaging technique for
evaluating the three-dimensional orientation of myelinated nerve fibers in entire, unstained histological brain
sections (Axer and Amunts, 2022; Axer et al., 2011a,b). The technique can achieve an in-plane resolution of
1.3 pum, capturing structures at the level of individual fibers and small fiber bundles. 3D-PLI has been used to
gain insights into the architecture of nerve fibers in different brain regions, such as the human hippocampus
(Zeineh et al., 2017), the sagittal stratum (Caspers et al., 2022) and the vervet monkey visual system (Takemura
et al., 2020). In addition, 3D-PLI has been used to validate fiber tractography algorithms and the interpretation
of DW-MRI (Caspers and Axer, 2019). 3D-PLI potentially allows joint imaging of fiber tracts and neuronal
cell bodies (Zeineh et al., 2017) due to scattering effects affecting light transmittance (Menzel et al., 2020).
However, this possibility has not yet been validated.

Cytoarchitecture can be studied in histological sections of postmortem brains with Cresyl violet. The staining
provides contrast due to staining of the rough endoplasmic reticulum. This allows to study cell shape, density
and distribution, which vary between brain regions. Due to its high spatial resolution, microscopic analysis
of histological sections is considered the gold standard to verify structural parcellations (Amunts and Zilles,
2015). Recent advances in high-throughput scanning, data processing algorithms, and computational capacities
have enabled the creation of 3D human brain atlases based on cytoarchitecture, such as BigBrain (Amunts
et al., 2013), the Allen Adult Human Brain Atlas (AAHA, Ding et al. 2016), and the Julich Brain probabilistic
atlas (Amunts et al., 2020).

Since 3D-PLI relies solely on optical properties of the tissue, it is label-free and can be combined with a staining
of the same tissue after its measurement. Post-staining, e.g. with Cresyl violet, enables a complementary
visualization of neuronal cell bodies, potentially establishing a direct link between cytoarchitecture with
3D fiber-architecture. This requires, however, a complex histological processing, which limits the number
of available samples, increases the risk of tissue damage and may lead to deformations of the section. To
correct for deformation and artifacts in the images of the two modalities requires a nonlinear registration step.
However, 3D-PLI and Cresyl violet stained tissue share only a few automatically identifiable cross-modal
registration landmarks, such as blood vessels or morphological landmarks. I.e., post-staining of sections
imaged with 3D-PLI is feasible, but technically challenging, and it hardly scales up.

Therefore, we aim to train a deep neural network model to perform image-to-image translation from 3D-PLI
to a Cresyl violet staining. Such an approach is often denoted as virtual histological staining, which refers to
computational methods that generate color-coded images of biological tissue without the need for traditional
staining techniques. The methods instead utilize optical properties of the tissue, such as birefringence,
autofluorescence, scattering, or absorption to create images that emulate the appearance of stained tissue. A
virtual Cresyl violet staining spatially aligned with 3D-PLI would allow an application of established tools for
cytoarchitectonic analysis, such as automatic cell instance segmentation (Upschulte et al., 2022), for 3D-PLI
measurements. Furthermore, it would provide detailed registration landmarks for cross-modal registration
(Ounkomol et al., 2018), thereby offering the opportunity to perform joint acquisition of aligned fiber and
cytoarchitecture at a larger scale than possible today.

One of the earliest applications of label-free imaging for visual staining was Quantitative Phase Imaging (QPI,
Curl et al. 2004). QPI measures the phase shift of light passing through a sample, producing high-resolution
images that reveal the optical properties of the tissue. It was used to generate images of collagen fibers,
red blood cells, and other tissue structures without staining (Curl et al., 2004; Park et al., 2018). Later,
machine-learning algorithms, especially generative models, have been trained to recognize and virtually
stain different tissue structures in unstained images by performing image-to-image translation. They have
successfully generated color-coded images of tissue that replicate the appearance of histological stainings, such
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Figure 1: The proposed virtual staining workflow. (A) Preprocessing of 3D-PLI sections that were post-stained
with Cresyl violet. As paired training data, regions of interest (ROIs) are manually cropped (red boxes) and
affine registered using large blood vessels as landmarks (green marker). Background pixels in train sections
are masked, and retardation values are scaled using gamma correction for visualization purposes. (B) Training
of a U-Net model using patches, extracted from same random locations (yellow boxes) in 3D-PLI modalities
direction ¢, retardation sin d, transmittance 77 and the Cresyl violet staining. 3D-PLI patches are used as
input to the model to predict a virtual Cresyl violet staining. The Cresyl violet patch acts as target and is rigidly
aligned with the prediction during the training procedure. The alignment is performed by our proposed online
registration head using Fourier-based correlation of pixels. A loss £ is computed between aligned target and
prediction. (C) Inference using the trained U-Net model to virtually stain unseen sections or ROIs. Inputs are
divided into overlapping tiles, which are processed independently by the U-Net model. The predictions are
then stitched back together to form the complete virtual staining.



as a virtual hematoxylin and eosin (H&E), Masson’s trichrome, and Jones’ stain from QPI of label-free tissue
(Rivenson et al., 2019), a transformation of H&E stained tissue into Masson’s trichrome, periodic acid-Schiff
(PAS), or Jones’ stain (de Haan et al., 2021; Yang et al., 2022). However, these stains are not very good at
distinguishing the different components of the nervous tissue.

Machine learning algorithms were also used to predict fluorescence-labeled images from transmitted-light
z-stacks (Ounkomol et al., 2018; Christiansen et al., 2018; Cross-Zamirski et al., 2022) or 3D fluorescence
structures and a FluoroMyelin stain from bright-field and polarization images of brain slices (Guo et al., 2020).
The methods typically use cross-entropy (Christiansen et al., 2018), mean absolute (L1) loss (Guo et al., 2020),
or style-related losses such as conditional generative adversarial network (GAN) loss (Rivenson et al., 2019;
de Haan et al., 2021; Cross-Zamirski et al., 2022). While including a GAN objective encourages prediction
of realistic-looking images, it has no clear mechanism to preserve content when conditioned on a particular
input image, and thus may introduce artificial structures (Cohen et al., 2018). A combination with a pixel-wise
reconstruction loss (e.g. L1 loss) mitigates this problem of GAN training and improves accuracy of predictions
(Isolaet al., 2017).

Since methods using paired training data for supervised image-to-image translation typically produce more
accurate predictions than unpaired methods (Zhu et al., 2017), a pixel-accurate alignment of training data
is necessary. This requires virtual staining methods to either perform a costly registration step or directly
acquire paired images. A paired acquisition with 3D-PLI, however, is not feasible and a lack of structural
overlap, such as a sufficient number of visible cell instances between the investigated modalities, makes
pixel-accurate registration challenging. Therefore, to alleviate the need for perfectly paired training data,
we propose a supervised learning objective performing local online registration of training pairs combined
with a translational-invariant style comparison. This allows us to train the model on imperfectly registered
image pairs with strong content preservation as in paired image-to-image translation, while enabling realistic
prediction of subtle structures like cell bodies (Fig. 1). The main contributions are as follows:

* We apply the matching of Gram matrix representations as a fexture sensitive style loss for the virtual
staining, as previously used for texture synthesis (Gatys et al., 2015). Since the computation of Gram
matrices is translation invariant, it allows a direct comparison of image statistics between coarsely aligned
training examples. It therefore improves the accuracy of predicted cell instances over commonly used
GAN style loss.

* An online registration head for improving registration accuracy of local image pairs after pre-alignment
of larger tissue sections during training. We consider Fourier-based registration methods, which can be
computed efficiently in real-time on modern GPU hardware.

* An equivariance loss to improve the accuracy of cell instance predictions by addressing the inherent
agnosticism of loss computation to constant displacements through online registration.

2 Materials and Methods

2.1 Microscopic imaging of histological brain sections

We demonstrate the proposed virtual staining approach on a set of brain sections for which Cresyl violet
staining has been performed after 3D-PLI measurement. The brain sample for this study was obtained from
a healthy 2.4-year-old adult male vervet monkey (Wake Forest-ID 1818, Axer et al. 2020; Takemura et al.
2020; Menzel et al. 2022) in accordance with the Wake Forest Institutional Animal Care and Use Committee
(IACUC #A11-219) and conforming the AVMA Guidelines for the Euthanasia of Animals. To obtain an
undistorted volumetric reference, a T2 weighted MRI was acquired in-vivo one day prior to sacrifice. The brain
was removed from the skull within 24 hours after flushing with phosphate-buffered saline and perfusion fixated
with 4% buffered paraformaldehyde. It was stored for several weeks at -70°C in 20% glycerin solution for
cryoprotection, and then sliced coronally with 60 um section thickness using a large-scale cryostat microtome
(Polycut CM 3500, Leica Microsystems, Germany). Blockface images of the frozen tissue block were taken
with a CCD camera before cutting each brain section. The images were reconstructed into a 3D blockface
volume to provide an undistorted reference for section realignment.

2.1.1 Image acquisition

For 3D-PLI acquisition, brain sections were scanned using a polarizing microscope (LMP-1, Taorad, Germany)
with 1.3 pm resolution (Axer et al., 2011b; Axer and Amunts, 2022). The focus level of the LMP-1 was
manually adjusted to the center of the tissue for each section. Inside the LMP-1 microscope, sections were
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Figure 2: Data modalities and registration challenges for training section 544. (A-C) 3D-PLI parameter maps:
Transmittance I, retardation sin ¢ and fiber orientation in HSV color space (hue: direction ; saturation,
brightness: retardation sin §). Background pixels are masked for visualization purposes only. (D) Affine
registered Cresyl violet staining. The pial surface of the 3D-PLI acquisition is shown as a contour plot in D
for reference. Between both data acquisitions remains a nonlinear misalignment that cannot be resolved by a
global affine transformation. At a local scale, the remaining misalignment is approximately linear. Yellow
arrows indicate blood vessels that can be used as mutual registration landmarks for coarse alignment.

placed on a specimen stage between a rotating linear and a circular polarizer on top of an incoherent light
source with a wavelength of 550 + 5 nm. Images were taken by a CCD camera for nine equidistant rotation
angles p of the rotating linear polarizer, covering 180° of rotation. At each pixel, the measured intensity of the
images followed a sinusoidal profile as

I
I,= ?T(1+sin(2p—2<p)sin5). (1

Using harmonic Fourier analysis, parameter maps of transmittance (I7), retardation (sin d), and direction ()
were obtained from the measurements, with a resolution of approximately 34,000 x 44,000 pixels per section,
revealing their fine-grained nerve fiber architecture (Fig. 2A-C). After 3D-PLI acquisition, brain sections were
washed, fixed and stained for cell bodies with Cresyl violet Nissl staining to reveal their cellular architecture.
They were scanned using flatbed scanners at 1 um in-plane resolution and saved as RGB color pictures with
eight bit color depth, storing pixel values from 0 to 255 (Fig. 2D).

2.1.2 Tissue shrinkage correction

Deformations induced by histological processing include a volumetric shrinkage of brain tissue (Amunts
et al., 2005). To correct this effect, the extent of shrinkage is usually estimated from the ratio between the
histological processed and true brain volume represented by the fresh weight of the whole brain (Amunts
et al., 2005, 2013) or an MRI reference (Wagstyl et al., 2020). To estimate the shrinkage of the 3D-PLI
acquisition, a linear registration of the 3D reconstructed blockface volume and the postmortem MRI of the
same brain was performed. The determinant of the transformation matrix showed a global volume change
below 1%, which can be neglected. In a second step, we calculated 2D shrinkage factors for each brain section
considered in this work as the quotient between the area occupied by tissue in the 3D-PLI measurement and
its corresponding blockface image. For test section #559, we estimated a 2D shrinkage factor of 0.97 meaning
a slight expansion of the 3D-PLI measurement relative to its original area within the MRI. This observation is
consistent throughout all sections with 2D shrinkage factors between 0.95 and 0.99. We report in-plane cell
sizes measured with 3D-PLI multiplied by an individual 2D shrinkage factor per section, assuming a uniform
area change of cells and surrounding tissue.



2.2 Initial cross-modality alignment

After the subsequent processing of brain tissue, Cresyl violet images exhibit a deformation relative to the
3D-PLI acquisition. To align both modalities, an initial affine registration of whole brain sections is performed
by manual identification of large blood vessels as landmarks visible in both modalities.

Performing the initial affine registration reveals remaining nonlinear deformations as shown in Fig. 2D. Since
nonlinear deformations typically have low spatial frequencies, causing smooth, large-scale distortions, we
expected near-linear deformations at smaller scales. Therefore, performing an additional more local linear
registration would lead to a better fit. We subsequently crop square regions of interest (ROIs) with a size
of 4,096 pixels (~5.3 mm) and without visible artifacts, covering distinct cellular architectures across the
whole coronal plane. For all ROIs we perform additional affine registration and make sure that transformed
landmarks have a maximum distance of 70 pixels (91 um) from their matches. All ROIs are warped and
resampled to 1.3 pm using linear interpolation to match the coordinate space of 3D-PLI. While this results in
a loss of precision relative to the original resolution of Cresyl violet scans of 1 um, matching the resolutions of
both modalities facilitates subsequent processing and analysis steps.

2.3 Fourier-based online registration of image patches

To correct the remaining misalignment of 3D-PLI and Cresyl violet after affine registration of ROIs at a finer
local scale, we introduce an online registration head that performs cross-modality alignment during training
based on model predictions of small image patches. We assume that once the style transfer model has learned
to reconstruct microscopic landmarks (e.g., individual cells or small blood vessels), such online registration
will promote the learning of additional landmarks until the training can use pixel-aligned training examples.

The registration method performed during training needs to be computationally efficient, since training will
require numerous registration iterations. Conventional feature-based image registration methods are accurate
and can model nonlinear deformations but are computationally expensive and sensitive to image degradation.
As we assume deformations to be approximately linear at a local scale, we take advantage of Fourier-based
image correlations (Tong et al., 2019), which can efficiently recover a translation between images in the
frequency domain.

2.3.1 Translational shift

Fourier-based image correlation methods are able to retrieve a translational shift (Au, Av) between image
functions f(u,v) and g(u,v) defined for integer pixel coordinates (u, v), such that f(u,v) = g(u + Au,v +
Avw). Both functions f and g represent images of equal height H and width W and are for now assumed to
repeat periodically with a periodicity of H and W, respectively.

A common approach to retrieve the translational shift between f and ¢ is to use circular cross-correlation
(Tong et al., 2019), which can be efficiently computed in the frequency domain as

CCo[avb] = (f*g)[a,b]
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for all integer shifts [a, b], where F denotes the Fourier transformation, 7~ its inverse, F{ f} its complex-
conjugate Fourier coefficients, and where we sum over all pixel coordinates (u, v). The translational shift can
subsequently be recovered by the location of the maximum value in CC® as

(Au, Av) = arg max CC°[a, b]. 3)
(a;b)

Eq. (2) can be extended to the mean over squared distances between pixel values as

MSE®[a, b] = ﬁ Z(f(u —a,v —b) — g(u,v))?
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Figure 3: Illustration of the proposed virtual staining approach. Patches of 3D-PLI parameter maps trans-
mittance I7, retardation sin § (scaled using gamma correction for visualization), and direction ¢ are used as
input to a 2D convolutional U-Net model as generator to predict a virtual Cresyl violet staining. An online
registration head estimates a rigid transformation R between a coarsely aligned Cresyl violet target patch and
the prediction via Fourier-based registration. Transformation R is used to align target and prediction at the
patch level. We calculate three distinct loss components: Lr, Ls and Lg. Reconstruction loss £ performs a
pixel-wise comparison between prediction and aligned target. Style loss £g compares feature maps of a VGG
network encoder using Gram matrices to mimic the style of the target image. Equivariance loss £ g applies the
same U-Net model a second time to a rotated version of the input by rotation 2. The output is compared with
the prediction rotated by same rotation €2, which promotes stability and avoids learning a constant shift of
pixels in the prediction.
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The translational shift (Au, Av) can be recovered analog to Eq. (3) by computing the arg min. For periodic
image functions f and g, solutions of CC° and MSE® are identical as the sum over squared functions f2 and
g? is constant (Fienup, 1997).

Since histological images are not periodic, zero padding is applied to fill both images up to a shape of
(Hf+ Hy —1,W; + W, — 1), in order to break periodicity and allow processing of images with different
heights Hy, H, and widths Wy, W,. The zero-padded images are denoted by new image functions f and go.
Furthermore, additional masks My and M, are introduced, which have a value of one at all pixel coordinates
within original height and width and zero elsewhere. We reformulate Eq. (4) to a non-circular form as

&)

which can be efficiently computed by multiple applications of Eq. (2). Here, the cross-correlations of f and
g3 with masks M, and M, respectively, ensure that pixel values of the original unpadded images are not
compared with zero padding values. Furthermore, the score is divided by the correlation between M and
M, to account for the number of overlapping pixels between original unpadded images. We apply the same
division by M x M, also for CC® to retrieve a non-circular variant called CC. While the solutions for circular
CC° and MSE® are identical, the solutions for non-circular CC and MSE differ, resulting in distinct registration
metrics.

2.3.2 Rotation and scale

While relative scale and rotation between images can also be retrieved in the frequency domain (Sheng, 1989;
Reddy and Chatterji, 1996), we expect only small relative rotation angles and minor scale variations due to the
initial affine registration by matching blood vessels. Therefore, we leverage the parallel processing capability
of GPUs to perform an exhaustive search over a fixed set of rotation angles without scaling adjustments. We
calculate registration metrics for every translational shift and rotation and select the rotation angle and shift
combination that yields a global optimum.



2.4 Conditional generation of Cresyl violet staining

Image-to-image translation refers to the process of generating images using a generator model GG conditioned
on an input image x. Predictions G(z) of the model are compared with actual target images y.

Our style transfer algorithm consists of three main elements:

1. Reconstruction Loss L : Similar to (Isola et al., 2017), we use an L loss between target i and prediction
G(z) to encourage pixel correspondence as

Lr=E,,||R(y) - G()|, (6)

where R performs the proposed online registration to spatially align y and G/(z) before loss calculation. This
enables the utilization of imperfectly aligned training data to penalize any discrepancies in corresponding
pixel values between G(z) and y.

2. Style Loss Lg: We apply a texture-sensitive style loss proposed by Gatys et al. (2015) based on squared
distances between Gram matrix representations of neural network features. Given a pre-trained VGG
encoder (Simonyan and Zisserman, 2015), Gram matrix representations are computed from feature
activations of its layers to characterize the texture of images at different complexities. For each layer [, the
encoder produces a different number of N; feature maps, each storing K spatial entries (i.e., height x
width). Elements of the Gram matrix G' ; atlayer [ are computed as the inner product between the i-th and

j-th feature map F} and F}, where each map is flattened to a K;-dimensional vector:

K
Gl =Y FiFj. (7)
k=1

Since the Gram matrix computation captures global feature correlations rather than spatial locations, this
allows a translation-invariant comparison of image statistics. The style loss is computed over all L layers
of the VGG encoder, using Gram matrix representations G' for the online registered target and G for the
prediction:
L 1 N N
_ l AL \2
L5 =Bay > oz 2 2 (Gl = Gy)* | ®)
1=1 U7 =1 j=1
We refer to this style loss as Gram loss.

3. Equivariance Loss Lg: By registering target y to generator prediction G(z) before loss calculation,
displacing objects in G(x) relative to its input  is not penalized by reconstruction loss L. To prevent
pixel shifts in G(x), we introduce a third loss component enforcing equivariance with respect to rotations
as

Lp =E, [QUG(2) — G(Q())ll, ©
where operator () represents an image rotation of 180°. Minimizing Eq. (9) ensures that pixels in G(x)

correspond to pixels at the same pixel coordinates in x as any discrepancy would cause a mismatch of
Q(G(z)) and G(Q(x)).

All components are aggregated into total loss
AC:)\ACR‘F(]«_)\)»CS“"??EE, (10)

with relative weightings A € [0, 1] and n > 0 as hyperparameters. An overview of the framework is illustrated
in Fig. 3.

As an alternative for style loss Lg, we consider adversarial training (Goodfellow et al., 2014) using a GAN
loss to compare with previous work in virtual staining (Rivenson et al., 2019; Cross-Zamirski et al., 2022). We
implement the GAN loss in the form of a Wasserstein GAN (Arjovsky et al., 2017). In contrast to conditional
GAN training (Mirza and Osindero, 2014; Isola et al., 2017), we do not condition the discriminator on input
images x, as this would cause the model to reproduce any misalignment in the training data. We refer to
models trained with Gram loss for Lg as Gram and models trained with GAN loss as GAN. In combination
with the online registration head, we refer to the models as Gram+Reg and GAN+Reg.

2.5 Model training

For the generator (G, we use the same 5-layer U-Net (Ronneberger et al., 2015) with numbers of features
[32, 64, 128, 256, 512] in all experiments, and adjust the input and output channels to 3 according to
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Figure 4: Localization of train and test data. (A) Seven sections used for training (blue stripes) and one section
used for testing (red stripe) were taken at the level of the central sulcus (CS; yellow dashed lines). Locations
are shown on top of the 3D reconstructed blockface of the brain for reference. Train and test data are 0.6 mm
apart from each other. (B) Selected locations of train and test regions of interest (ROIs), which are used for
training and testing the models. The images show ROIs from each of the train and test sections on top of
globally affine registered Cresyl violet images. Black contour plots outline the pial surface of corresponding
3D-PLI sections for reference.

our setup. To train G, we use square 3D-PLI patches of 444 pixels size, represented by parameter maps
transmittance (Ir), retardation (sin §) and direction (¢). We reformulate the 3D-PLI parameters as triplets
(I1,sin d cos(2¢p), sin d sin(2¢p)) to resolve the circular behavior of direction ¢, standardize the channels and
stack them to the input of generator G. Due to the fully convolutional approach of the U-Net model without
padding, the generated output predictions have a reduced size of 260 pixels. Unless specified otherwise, we
use a patch size of 360 pixels for the target Cresyl violet images, centered at the input patch position. They are
chosen to be larger than the model predictions to allow the online registration to correct translational shifts of
up to 50 pixels in any direction, while keeping the predictions fully contained within the target images. We
normalize image pixel values of the Cresyl violet staining to the range of [0, 1].

For computing style loss Lg, we extract features from a VGG19 model (Simonyan and Zisserman, 2015) to
compute the Gram loss. The VGG feature encoder network has a depth of four layers and three input channels
with pre-trained weights on ImageNet (Deng et al., 2009). We multiply the style loss Lg by a constant factor
of 10* to bring it to the same order of magnitude as reconstruction loss L. For the training, we use Adam
optimizer (Kingma and Ba, 2017) with 8; = 0.9, 82 = 0.999 and a learning rate of 1073, If not stated otherwise,
we use 7 = 0.1 and A = 0.5 as default in the training objective in Eq. (10).

In the case of GAN style loss Lg, we use a 4-layer convolutional network as discriminator with kernel size 4,
stride 2, padding 1, and feature size of [32, 64, 128, 256], followed by batch normalization (Ioffe and Szegedy,
2015) and Leaky ReLU after each convolution. For training, we use the Wasserstein GAN (Arjovsky et al.,
2017) objective and a separate Adam optimizer for the discriminator and the generator, using 5; = 0.5, 83 =
0.999 and a learning rate of 10™*. We perform five updates for the discriminator for one update of the generator
and clamp discriminator weights at 0.03 after each step.



Training data For model training and evaluation, we use eight coronal sections at the level of the central
sulcus. Seven sections are used for training and one section is kept for testing with a gap of 0.6 mm between
train and test sections (Fig. 4 A). From the training sections, 27 affine-aligned ROIs are extracted (Fig. 4 B),
where one ROI is held out for validation to identify possible overfitting. For each ROI, we extract joint target
Cresyl violet images and 3D-PLI modalities at the same center location. To maximize the diversity of the
training examples, we do not pre-compute training patches but sample them randomly during the training
process. We use a batch size of 128 and draw 32,768 paired random patches per epoch evenly distributed
across the training ROIs, resulting in approximately 1,260 random samples per ROI per epoch. All training is
performed for 150 epochs or until model convergence if validation loss did not decrease for at least 50 epochs.

Data augmentation To enhance the robustness of our trained models we employ 3D-PLI-specific data
augmentations, which were carefully modified to keep physically plausible signal parameters (Oberstrass et al.,
2024). Specifically, we perform random rotation by angles between -180° and 180° with mirror padding and
horizontal and vertical random flipping. In both cases, direction parameter maps ¢ are corrected accordingly.
Additionally, we perform Gaussian blurring of 3D-PLI parameter maps for random standard deviations up to
o =1.5 and kernel sizes of 3 or 5. We scale thickness and attenuation coefficients for 3D-PLI parameter maps
by random values between 0.5 and 2.

Implementation All models were trained on the supercomputer JURECA-DC at the Jiilich Supercomputing
Centre (JSC, Thornig 2021) on a single node by splitting each batch equally onto 4 NVIDIA A100 GPUs
using distributed data-parallel strategy. For data pre-processing 128 worker processes were spawned on 128
CPU cores. For reference, training for 100 epochs took 8 hours with online registration and 4 hours without on
this hardware. The implementations are based on the Quicksetup-ai template by the HelmholtzAI Consultants
Munich?, using the frameworks: PyTorch (Paszke et al., 2019), PyTorch Lightning (Borovec et al., 2022) and
Hydra (Yadan, 2019).

Online registration For the online registration head, we restrict accepted solutions of Eq. (5) to translation +
rotation pairs that cause the registered target to have full overlap with the prediction, avoiding loss calculation
over zero-padded values. We check the translation correction for 31 rotation angles from -7.5° to 7.5° with
steps of 0.5° and take the translation + rotation pair with the best registration score.

3 Experiments and Results

We compare a selection of performance scores to identify optimal hyperparameters of the proposed method
and assess the overall potential of the best performing model. The main hyperparameters are the choice
of the online registration metric, the type of style loss Lg, its relative weighting ) to reconstruction loss
L r, and whether to use the additional equivariance loss £g. To reduce the massive computational demands
by a rigorous grid search across all hyperparameters, we choose to identify a suitable choice for the online
registration metric and model variants using different loss components independently before determining an
optimal relative weighting .

3.1 Experiment setup
3.1.1 Test data

‘We manually select four ROIs for model evaluation, ensuring a diverse representation of different cytoarchi-
tectonic characteristics from the held-out test section (Fig. 4B). The ROIs contain primary motor cortex 4a,
temporal cortical area TE, the hippocampal cornu Ammonis (CA) region, and parts of the putamen and globus
pallidus (Pars interna and Pars externa) as subcortical structures (Fig. 5).

As the computation of image metrics requires a precise alignment of test data, we perform elastic registration
of test ROIs based on landmarks and image intensity using the bUnwarpJ (Arganda-Carreras et al., 2006)
algorithm. We use predictions of an independently trained Gram+Reg model as target. The predictions are
used to manually identify 15-25 characteristic cell clusters as landmarks per ROI, which are confirmed by the
location and arrangement of faint shadows of cells visible in the 3D-PLI transmittance. For registration, we
use an image weight of 1.0, a landmark weight of 10.0, and a consistency weight of 10.0. The strong weights

*https://github.com/HelmholtzAI-Consultants-Munich/Quicksetup-ai
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for landmarks and consistency are chosen to prevent the transformation field from overly conforming to the
predictions and to overcome local optima.

3.1.2 Evaluation scores

We evaluate the impact of different model parameter choices on the quality of the predicted virtual staining
by applying structural similarity index measure (SSIM, Wang et al. 2004), mutual information (MI), and
root-mean-square error (RMSE). For each metric, we report the mean over all test ROIs. To evaluate the
ability to localize cell bodies, we compute F1 scores for instance segmentations of predicted and target cells
using a contour proposal network (CPN, Upschulte et al. 2022, 2023). We only consider cells with a minimum
in-plane size of 100 um? and require a minimum intersection over union (IoU) of 30%. Smaller cells could
not be reconstructed accurately and would introduce noise into the evaluation. For the cell detection model,
we fine-tuned a pre-trained® CPN for cell body segmentation in cell-stained microscopy images using the
celldetection* Python package. Fine-tuning was performed on a diverse mix of manually annotated images, as
well as synthetic data.

We restrict the computation of evaluation metrics to gray matter, where most of the neuronal cell bodies are
located, excluding white matter and background pixels. In test ROIs showing cortical regions, we further
exclude molecular layer I as it consists of only a few individual neurons and exhibits a nonlinear deformation
due to tissue shrinkage, which could not be reliably corrected in the registration. For the ROI showing the
hippocampus, we exclude the fascia dentata, as its granular layer consists of very densely packed neurons,
which cannot reliably be distinguished and restrict the analysis to hippocampal CA1-CA4 regions.

3.2 Online registration metric

To compute a pixel-aligned reconstruction loss we apply the online registration head (Sec. 2.3). We consider
correlation-based registration metrics CC and MSE with phase correlation (PC, Kuglin 1975) and blur-invariant
phase correlation (BIPC, Ojansivu and Heikkila 2007). We apply a Hann window to PC and BIPC before their
calculation to mitigate their bias towards the sharp image edges (Gonzales and Woods, 2008).

To understand how image degradation effects can influence the success of the online registration head, we
compare the robustness of the metrics against noise and blur. A square target image with 460 pixels size is
extracted from a random location in the Cresyl violet staining. Next, a smaller moving tile with a size of
260 pixels is extracted from a random location within the target and distorted by gradually increasing noise
or blur on the image. We add noise from a zero-centered Gaussian distribution with standard deviation o
increasing from O to 25 and Gaussian blur with increasing kernel sizes with standard deviations o growing
from O to 50. The registration head is applied with each metric to realign the degraded moving tile with its
location in the target image. We compare the hit rate over 100 examples per degradation step. The registration
is considered successful if the determined translational displacement remains within 5 pixels of the actual
displacement.

Fig. 6 shows that as blur increases, BIPC with a Hann window achieves the best performance. This result is
expected, as the metric remains invariant to blur. We also observe that CC and MSE perform best in mitigating
the effects of noise, while the other metrics fail already with a minor amount of noise. Overall, MSE provides
a balanced tradeoff between blur and noise response.

To make an optimal choice of a registration metric for online registration, we train Gram+Reg models with
CC, BIPC, PC, and MSE compared to a Gram model without online registration. We use a Cresyl violet
target patch size of 360 pixels and predictions of 260 pixels, centered within the target patch. This allows
the online registration to correct for a maximum of 50 pixels translation in each dimension. For Gram+Reg
models trained with CC, BIPC and the Gram model, A = 0.1 was chosen as it improved results compared to
A = 0.5 for PC and MSE.

Tab. 1 shows a quantitative comparison of the models. Independent of the metric, the best results are observed
when using Gram+Reg with online registration Among all metrics considered, the model with MSE performs
best.
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Figure 5: Overview of ROIs used for the evaluation, which represent distinct cellular architectures. They
were extracted from section 559, located 0.6 mm apart from the training sections. Embedded windows show
magnified details inside each ROI. The locations of the magnified views are indicated by yellow frames.
Columns each show one of the four test ROIs taken from the anterior subdivision of the primary motor cortex
(4a), the hippocampal cornu Ammonis (CA) region, temporal cortical area TE, and parts of the putamen
and globus pallidus (GP; a: GP Pars interna; b: GP Pars externa) as subcortical nuclei. The first three
rows demonstrate 3D-PLI modalities transmittance I, retardation sin § (scaled using gamma correction for
visualization) and fiber orientation in HSV color space (hue: direction ¢; saturation, brightness: retardation
sin d). The 3D-PLI modalities are compared to the registered target Cresyl violet and predicted virtual staining.
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Figure 6: Robustness of different online registration metrics against synthetic image distortions. We report the
proportion of correct rigid alignments for different blur (A) and noise (B) levels by registration metrics MSE,
CC, PC, and BIPC. The registration is considered successful (a hit) if the translational displacement obtained
remains within 5 pixels of the actual displacement.

Table 1: Performance of models trained with different online registration metrics in terms of similarity of
generated images with ground truth. We compare cross-correlation (CC), phase-correlation (PC), blur-invariant
phase-correlation(BIPC), and mean-squared error (MSE) as online registration metrics against using no online
registration (-).

Method ~ Metric | MIT RMSE| SSIM{ F11
Gram - 0126 336 0354 48.8
CC [0.136 330 0379 552

GramsRee  BIPC | 0.149 315 0371  54.0
€ pC |0.185 319 0415 594

MSE | 0226 298 0.444  63.7

3.3 Performance analysis of different model variants

To justify including equivariance loss L (Eq. (9)) in the total loss, Fig. 7 illustrates the effect of training
Gram+Reg models with this loss component enabled and disabled. With £z disabled (1 = 0), cell instances
in the model predictions exhibit a relative displacement. Enabling L (1 = 0.1) improves the overlap of cell
instances with the original Cresyl violet staining.

To quantify the impact of the loss component £ g on the predictions, we compare the models with £ enabled
and disabled in Tab. 2. We consider Gram and Gram+Reg, as well as GAN and GAN+Reg as model variants.
All models use A = 0.5 expect for the Gram model without online registration, where A = 0.1 showed better
performance. Since displacements of cell instances in the model predictions occur randomly with varying
strength, we report mean and standard errors across four independent trainings. Models trained with Lg
enabled show the highest correspondence with the target staining. Without online registration, the advantage
of including £ i becomes negligible. Furthermore, results in Tab. 2 demonstrate that Gram models outperform
their corresponding GAN models in all evaluation metrics. Regardless of the variant used for style loss Lg, all
models benefit from the online registration.

A comparison of model predictions is shown in Fig. 8C for the whole cortical depth of an Isocortex sample
from temporal cortical area TE. GAN+Reg and Gram+Reg provide the most realistic-looking reconstructions
in terms of relative size and shape of cell bodies, along with the differences between layers concerning cell
packing density. While Gram+Reg seems to be influenced by technically-related inhomogeneities in staining
intensity, GAN+Reg produces a clearer contrast between stained cells and surrounding tissue. Gram+Reg

3ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c
*https://github.com/FZJ- INM1-BDA/celldetection
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Figure 7: Including equivariance loss L in the training improves cell instance overlap of Gram+Reg and
GAN+Reg models. (A) 3D-PLI input as transmittance I, retardation sin ¢ (scaled using gamma correction)
and fiber orientation map in HSV color space (hue: direction ; saturation, brightness: retardation sin ¢) for an
example patch from the pyramidal layer of the hippocampal CA1 region. (B) Registered target Cresyl violet
staining, a cell segmentation by a CPN model, and the identified target cell instances. (C) Predicted virtual
staining of models trained with equivariance loss £ g enabled (v') or disabled (X). Cell instances are overlaid
with their target cells. Models trained with equivariance loss show less displacement of cells and increased F1
scores for this specific image patch. Since the displacement occurs randomly, a patch and random seeds for
the models are selected that show a particularly strong effect.

Table 2: Effect of the proposed online registration on models trained with different choices of style loss L.
Each variant is trained with online registration head (Reg.) and equivariance loss (L) enabled or disabled.
MSE metric is used for online registration and 7 = 0.1 for weighting of Lg. The deviation is reported as
standard error over four independent trainings with different random seeds.

Ls Reg. Lp | MI 1 RMSE | SSIM 1 F1 1

, 7/ | 02240003 296+0.6 0445+0003 63.1+0.5

Gram X | 021140004 302+04 043240004 61.6=+04
x Y/ |0I11£0012 33.6+08 0314+0023 38976

X | 0.107+£0.007 3424+03 0.304=+0015 40.6+57

, /| 01600008 305+05 038940012 503+2.1

GAN X | 0.1264+0.008 33.0£04 03470010 43.0%14
x 7/ | 0085+0008 381+05 02490001 2L.1+03

X | 0.096+0.008 388+ 1.7 025340005 222+13

detects the transition from the cortex to white matter better than GAN+Reg. Both methods introduce an
artificial arrangement of cells into cortical columns not present in the original Cresyl violet staining.

To further analyze the ability of the methods to reconstruct the laminar cell organization, we compute grey
level index (GLI) values (Schleicher et al., 1978; Zilles et al., 1978). GLI values provide an established proxy
for volume density of stained cell bodies in gray matter regions and are used to characterize the laminar
architecture of cortical areas (Schleicher et al., 2000). To compute GLI values, adaptive thresholding is applied
to create a mask of pixels occupied by cell bodies for each image. The masks are subsequently down scaled by
a factor of 16 to a spatial resolution of 20.8 um, with each value representing the fraction of segmented pixels.
Resulting GLI images, cropped to the area between pial surface and the cortex/white matter transition, are
displayed for the Cresyl violet target and the predictions in Fig. 8D.

14



Fiber orientation Transmittance GAN+Reg Gram+Reg

D Cresyl violet (target) GAN Gram GAN+Reg Gram+Reg
0.0 .

Cortical depth
Cortical depth
Cortical depth
Cortical depth
Cortical depth

1.0 1.0 1.0 1.0 1.0
0% 25% 50% 0% 25% 50% 0% 25% 50% 0% 25% 50% 0% 25% 50%
Gray Level Index Gray Level Index Gray Level Index Gray Level Index Gray Level Index

Figure 8: Comparison of virtual stainings for a patch of temporal area TE. (A) 3D-PLI input visualized as fiber
orientation in HSV color space (hue: direction ¢; saturation, brightness: retardation sin ¢) and transmittance
I7. (B) Registered target Cresyl violet staining for reference with annotations of cortical layers I-VI and white
matter (wm). (C) Predicted virtual stainings of GAN and Gram models and extended variants using MSE
online registration (GAN+Reg, Gram+Reg). (D) GLI images ranging from the pial surface to the cortex/white
matter transition and average profiles (red lines) for layers I - VI.

For each of the GLI images, 31 intensity profiles vertically oriented to the cortical layers are extracted to
represent the columnar distribution of GLI values. The profiles are restricted to layers II - VI since staining
inhomogeneities make GLI values for layer I unreliable. To obtain one representative profile for each image,
the profiles are averaged and smoothed using a mean filter with kernel size 3 to improve the signal-to-noise
ratio. The average profiles are shown on top of each GLI image in Fig. 8D.

The average GLI profile for the GAN model shows no clear distinction between cortical layers II-IV and
misses a peak for layer I'V. The profile by Gram replicates peaks for layers II and IV but does not provide a
clear representation of the cortical layers. GAN+Reg and Gram+Reg both replicate peaks for the higher cell
densities in layers II, IV and VI. Gram+Reg shows the clearest distinction between layers and even replicates
slightly nuanced peaks of the profile within layers.
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Table 3: Different values for weighting parameter A show that a balance between style loss Lg and reconstruc-
tion loss Lp is required in the training of a Gram+Reg model. Setting A = 0 means only Lg is used. Setting
A = 1 means only Lp is used.

Method A | MIt RMSE] SSIM{ FI1

0 0.124 33.8 0.340  48.7

0.03 | 0.162 31.9 0.394 577

Gram+Reg 0.25 | 0.210 30.7 0436 62.8
0.5 | 0.226 29.8 0.444  63.7

0.75 | 0.238 29.8 0448 63.2

0.97 | 0.230 30.7 0446  59.6

1.0 | 0.090 38.0 0.347 0.0

Transmittance Retardation Fiber orientation Cresyl violet 0.0 0.03 0.5 . 1.0
A

Figure 9: Predicted virtual Cresyl violet stainings for different weightings between reconstruction and style
loss components. (A) 3D-PLI inputs as transmittance I, retardation sin § and fiber orientation in HSV color
space (hue: direction (; saturation, brightness: retardation sin ). The retardation has been scaled using
gamma correction for visualization. (B) Registered target Cresyl violet staining. (C) Predicted virtual stainings
of models trained with different weightings A between reconstruction loss £ and style loss Lg. Setting A = 0
focuses on Lg and setting A = 1 on L exclusively. Gram loss is used for £g. Within each row, yellow
markers indicate the same structures across all columns. (i) Temporal area TE and underlying white matter
with arrowheads highlighting blood vessels within white matter and cortical layer VI. (ii) Dentate gyrus of the
hippocampus with a dashed line delineating the proximal end of the granular layer of the fascia dentata (FD).
(iii) Pyramidal layer of the cornu Ammonis (CA1) region of the hippocampus highlighted by dashed lines. (iv)
Layer V of the primary motor cortex with arrowheads highlighting two Betz cells.

3.4 Optimal balancing of style and content

To identify an optimal weighting \ of the style loss in Eq. (10), we train Gram+Reg models with different
values for A and MSE online registration metric. A quantitative evaluation of the trained models in Tab. 3
shows that larger values for A up to A = 0.75 achieve the best MI, RMSE, and SSIM scores. This indicates that
the reconstruction loss should be given a stronger weight but should not be used alone (A = 1). The highest
overlap of predicted cell instances measured by the F1 score is obtained for a balanced weighting with A = 0.5.

A visual comparison of predictions of Gram+Reg models trained with different choices for A is shown in
Fig. 9 for selected crops from the test data. By using Lz only (i.e. A = 1), the model is unable to reconstruct
details from the Cresyl violet staining. It is only able to locate strongly pronounced structures such as the
granular layer delineated in (ii). Independent of the style loss weighting, the models do not resolve individual
cell instances present within the granular layer. Instead, they capture the overall cell density, represented by a
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Figure 10: Reliability of predicted cell instances increases with their size. We report F1 scores between
detected cell instances by a CPN model in the predicted and target stainings. F1 scores are reported for
intervals of the segmented in-plane cell body area. Each bar represents the average over four independently
trained models. Error bars show standard deviation.

continuous dark purple color. By increasing emphasis on Lg (i.e. with decreasing values for ), the generator
is able to reconstruct details such as neuronal cell bodies in less dense regions in (i)-(iv) and blood vessels
in (i). It is also able to generate Glial cells to match the appearance of white matter in (i) and (iii). However,
generators trained with an overweighting of style loss also tend to miss some strongly pronounced structures
in the predictions, such as the blood vessels shown in (i) or the Betz cells in (iv).

3.5 Reliability of predicted cell instances across cell sizes

Larger cells are expected to be more pronounced in 3D-PLI parameter maps compared to smaller cells that
may be overshadowed by other tissue components such as nerve fibers. To quantify the reliability of predicted
cells in the virtual staining in relation to their size, we compute F1 scores for multiple bins of 2D in-plane
cell sizes. Obtaining F1 scores for each bin requires computation of true and false positives, as well as false
negatives through matching of predicted and target cells with a minimum IoU threshold of 0.3. We modify the
computation of true and false positives by matching only predicted cells within that range with all cells in the
target image. To count false negatives, target cells within that range are matched with all cells in the prediction.
Cell sizes are corrected with the 2D shrinkage factor of 0.97 estimated in Sec. 2.1.2, assuming homogeneous
shrinkage of cells and surrounding tissue.

Results in Fig. 10 show that smaller cells < 50 um have much lower F1 scores, below 20.0, with all methods.
With increasing 2D cell size, they can be identified more accurately. The Gram+Reg model shows highest F1
scores across all cell sizes and smallest variation between four independently trained models, measured as
standard deviation.

4 Discussion

We introduced an online registration head capable of approximating smooth nonlinear deformations, given
sufficiently small patch sizes for training. Its accuracy is inherently influenced by the choice of the registration
metric. We identified MSE in the Fourier domain through multiple applications of cross-correlation as superior
to other typically used metrics in Fourier-based image registration, including PC. This is a notable observation,
as PC is a popular choice due to its robustness to intensity variations and frequency-dependent noise (Tong
et al., 2019). However, during early training stages, model predictions are often blurred. The network tends to
learn coarse, low-frequency structures first. Additionally, random weight initialization introduces noise in
the first steps. MSE appears more resilient to such blur and frequency-independent noise, leading to more
accurate predictions (Fig. 6). This behavior can be explained by PC’s reliance on strong high-frequency
spectral peaks, which are diminished by blur (Pedone et al., 2013). MSE, in contrast, maintains sensitivity
across the frequency spectrum and can better handle smooth, low-detail inputs that dominate during initial
training.
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The applied pixel-wise reconstruction loss assumes a precise alignment to provide an informative feedback
signal. However, the online registration head will typically only succeed if a good contrast between structures
is being predicted. In other words, there is a cross-dependency of accurate pixel reconstructions and producing
a high contrast over training iterations, which may result in a conflict during training. This can be seen in
Fig. 9, where a Gram+Reg model focussing on pixel reconstruction only made heavily blurred predictions that
do not provide structural details for cell-precise registration. Adding a style loss component leads to more
pronounced contours while simultaneously achieving higher pixel reconstruction accuracy (Tab. 3) through
online registration. This underpins the importance of the additional style loss, which does not depend on
perfect alignment and guides the training to produce structures.

Apparently, the choice for Gram or GAN as style loss should be considered in the light of the application.
Training with Gram loss led to more accurate cell localization and pixel values (Tab. 2). However, it was
affected by staining intensity inhomogeneities, resulting in blurry cells (Fig. 8). GAN loss, on the other hand,
produced higher contrast in cells but with lower accuracy. This could be a consequence of the Gram loss
referring to the specific target image, while the GAN loss refers to the average scoring of the discriminator
across the distribution, less than the precision with respect to an individual image.

The choice of style loss function also impacts the stability and complexity of the training process. When using
GAN loss, the training process has to be carefully monitored. If training collapses, restarting is often necessary.
It requires careful balancing of discriminator and generator capacities and tuning of style and reconstruction
loss weighting. Training with Gram loss, on the other hand, is generally more convenient to train. It requires
no balancing of model capacities, is robust to loss balancing, and does not collapse during training.

Throughout all models, we observed occasional staining inhomogeneities in the predicted virtual stainings.
This effect was particularly pronounced in the form of stripe patterns in the primary motor cortex ROI (Fig. 5).
Cell body membranes and blood vessel walls pose hard edges in the cortex, resulting in diffraction patterns
even brighter than the background field. Varying of the focus level of the LMP-1 microscope allows optical
scanning of the Poisson spots induced by diffraction. Cell bodies are highlighted with higher contrast by
shifting and lowering the focal plane to the top and the bottom of the tissue by approximately 30 um (Fig. 11).
This means that the ability to predict cells from 3D-PLI measurements is sensitive to the focus level of the
microscope, and it is difficult to generalize to unseen focus levels that were not part of the model training.

During the mounting process of the 60 pm thick sections in 20% glycerol solution on the object slide the gray
matter is more prone to swelling than the more compact white matter, leading to tissue expansion, mechanical
stress and tape flutter especially in the cortex due to its higher flexibility. The free-floating tissue between
object slide and coverslip shapes waves of up to 30 um in amplitude which affects the focus level and the light
incidence on the tissue, hence the effective birefringence, modifying the polarization state of the transmitted
light. Therefore, the stripe-like inhomogeneities in the virtual staining can be explained by such variations in
focus levels within the same section.

An effective countermeasure against waves in the tissue is to weight the open coverslips after embedding
overnight. In addition, the acquisition of multiple focus levels for each section could potentially provide
missing information. For the given dataset, however, these potential solutions were not applicable, and
measurements could not be easily repeated. In addition, the acquisition of multiple focus levels would
significantly increase the measurement effort. Nevertheless, it will be an important consideration for future
investigations to include multiple focus levels in each measurement to improve cell extraction.

While most of the larger cells (>100 um? in-plane size) could be localized in 3D-PLI parameter maps, smaller
cells were often missed or misplaced in the predictions. This is expected as smaller cell structures are often
dominated by a stronger signal of intersecting nerve fibers or overlay each other due to the high section
thickness of 60 um required for 3D-PLI. The predictions also showed a stronger arrangement of cells into
cortical columns than in the target images. The presence or absence of this arrangement is one of the criteria
used to identify cortical areas, which might impair downstream interpretation of the predicted architecture. It
may be attributed to the pronounced signal of radial fibers in 3D-PLI, which are used by the virtual staining
model to infer potential cell locations. Further investigations are necessary to understand this effect.

Our ablation experiments in Sec. 3.2, Sec. 3.3 and Sec. 3.4 support the design decisions of the proposed virtual
staining method. They showed an overall good reconstruction and localization of individual cell bodies. But,
of course, the virtual stainings can not yet fully replace real measurements. They occasionally include staining
inhomogeneities, miss smaller cells, or introduce implausible cytoarchitectonic features, such as artificial
columnar arrangements of cells. In contrast, extracting GLI profiles from the predictions demonstrated that the
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laminar cell organization can be reconstructed quite well. However, further investigations with larger datasets
spanning multiple brain areas are necessary to thoroughly assess their reliability.

The proposed methodology might be further improved by extending the amount of training sections, brain
regions and focus levels in 3D-PLI acquisition. We also expect that the expressiveness of the Gram matrix
representation could be enhanced by replacing the VGG encoder, pre-trained on ImageNet, with a domain-
specific model, which is powerful on microscopy data. This is technically motivated by the observation that
higher-level features in ImageNet-pretrained networks, such as VGG, are optimized for object semantics
in natural images (e.g., faces, animals, vehicles), which are irrelevant in the context of fine-grained texture
characteristic of microscopy images (Stuckner et al., 2022). In contrast, microscopy-specific encoders are
better suited to capture such low- to mid-level textural features and have been shown to improve clustering
(Oberstrass et al., 2024), segmentation (Stuckner et al., 2022), and the evaluation of generative models (Kropp
et al., 2024) over those trained on ImageNet. Therefore, computation of Gram matrices using domain-specific
encoders (Spitzer et al., 2017; Schiffer et al., 2021b,a) or emerging foundation models for histology (Tran
et al., 2024) might further enhance representation of cytoarchitectural characteristics.

5 Conclusions

Motivated by previous observations that larger cells are encoded in 3D-PLI parameter maps alongside fiber
orientations (Zeineh et al., 2017), we introduced a deep learning model for transforming 3D-PLI maps into
virtual Cresyl violet cell body stainings. This approach enables joint visualization of fiber tracts and cell bodies
in the same tissue. Compared to real post-staining, the model offers a scalable alternative that avoids manual
labor, limited only by its generalization to unseen architectural patterns. Validation against post-stained test
sections confirms that our virtual stainings reliably localize most of the larger cell bodies (>100 pm? in-plane
size).

A central contribution of our approach is the integration of an online registration head during training. This
component eliminates the need for explicit multimodal registration, which is commonly required in virtual
staining pipelines (Rivenson et al., 2020; de Haan et al., 2021; Yang et al., 2022). It is a simple but highly
efficient add-on that can be combined with various loss formulations, leveraging model-estimated landmarks,
to continuously refine the alignment over time.

The method enables accurate prediction of cell bodies from 3D-PLI and successful adaptation to the appearance
of real Cresyl violet stainings. As such, it expands the usability of 3D-PLI in large-scale data settings, allowing
virtual staining at scale. While such synthetic data cannot and should not replace real histological measurements,
it offers promising opportunities in downstream analysis. Potential applications include cross-modal image
registration to align real Cresyl violet and 3D-PLI images, disentangling signal sources to identify voxels
dominated by cell bodies (e.g., for improved tractography), and missing data imputation in serial section stacks.
Especially in interleaved modalities, this could enable the reconstruction of complete datasets. Of course, such
applications require careful quality control and distinction between synthetic and real measurements.

The outcomes of this study lay the groundwork for prospective investigations focused on enhancing 3D-PLI
analysis, particularly through the exploration of dedicated cell detection techniques to directly extract cell body
instances from 3D-PLI data. Furthermore, the findings serve as a motivation for gathering additional training
data, aiming to refine and extend the application of the virtual Cresyl violet staining to a broader range of
sections, brains, and species. While the current model is trained specifically to replicate Cresyl violet stainings,
the same methodology can in principle be adapted to other staining types, provided appropriate retraining is
performed. Future research should focus on further investigating its transferability to other datasets, staining
protocols, and brains.
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Data and Code Availability

The training pipeline for presented Gram+Reg and GAN+Reg models is available on GitHub’.

Code for the online registration ®, data augmentations for 3D-PLI images , visualization methods for 3D-PLI
modalities 8, as well as additional dependencies 9 are hosted on our external GitLab server.

The ROIs employed for the training and testing of the models in this study, along with a selection of model
predictions, are available in our central institutional repository (Oberstrass et al., 2025).
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A Appendix

Focus level: +30 pm Focus level: +0 um Focus level: -30 um

—— —
150 um T 500 um

Transmittance

Input
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Fiber orientation

Prediction
Virtual staining

Figure 11: Virtual staining quality varies with the focus level of the LMP-1 due to differences in the captured
diffraction patterns. Example images show the vervet entorhinal cortex with zoom-ins to the architecture
of cortical layers II-III. 3D-PLI inputs are represented by the transmittance I7, retardation sind (scaled
with gamma correction) and fiber orientation in HSV color space (hue: direction ¢; saturation, brightness:
retardation sin §). The same Gram+Reg model is used to predict virtual stainings from a focus level manually
adjusted to the tissue center (+0 um) and 30 um above and below. A lower focus level of -30 um achieves
the highest consistency in staining intensity and produces the most cells. Higher focus levels introduce an
increasing amount of staining artifacts.
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