001042650 001__ 1042650
001042650 005__ 20250606202253.0
001042650 0247_ $$2doi$$a10.1002/ange.202424515
001042650 0247_ $$2ISSN$$a0932-2132
001042650 0247_ $$2ISSN$$a0044-8249
001042650 0247_ $$2ISSN$$a0932-2159
001042650 0247_ $$2ISSN$$a0170-9046
001042650 0247_ $$2ISSN$$a0170-9054
001042650 0247_ $$2ISSN$$a0932-2140
001042650 0247_ $$2ISSN$$a1521-3757
001042650 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02631
001042650 037__ $$aFZJ-2025-02631
001042650 082__ $$a660
001042650 1001_ $$0P:(DE-Juel1)192542$$aWu, Jianchang$$b0$$eCorresponding author
001042650 245__ $$aHighly Stable Sn─Pb Perovskite Solar Cells Enabled by Phenol‐Functionalized Hole Transporting Material
001042650 260__ $$aWeinheim$$bWiley-VCH$$c2025
001042650 3367_ $$2DRIVER$$aarticle
001042650 3367_ $$2DataCite$$aOutput Types/Journal article
001042650 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1749212833_27870
001042650 3367_ $$2BibTeX$$aARTICLE
001042650 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042650 3367_ $$00$$2EndNote$$aJournal Article
001042650 520__ $$aSn─Pb perovskites, a most promising low bandgap semiconductor for multi-junction solar cells, are often limited by instability due to the susceptibility of Sn2+ to oxidation. Inspired by the antioxidative properties of polyphenolic compounds, we introduce the reductive phenol group and strong electronegative fluorine into an organic conjugated structure and design a multi-functional polymer with fluorine and phenol units (PF─OH). The design of PF─OH allows the effective rise in the energy barrier of Sn2+ oxidation, leading to a significant enhancement in the stability of Sn─Pb perovskite devices from 200 to 8000 h—an improvement of around 100 times. Additionally, the strong binding energy between Sn2+ and the phenol in PF─OH critically influences Sn─Pb perovskite's crystallization and grain growth, resulting in perovskite films with fewer pinholes at the buried interface and extended carrier lifetimes. This enhancement not only boosts the power conversion efficiency (PCE) to 23.61%, but also significantly improves the operational stability of the devices. Ultimately, this design strategy has been proven universal through the phenolization of a series of molecules, marking a milestone in enhancing the stability of Sn─Pb perovskites.
001042650 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001042650 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042650 7001_ $$0P:(DE-Juel1)207942$$aHu, Manman$$b1$$ufzj
001042650 7001_ $$0P:(DE-HGF)0$$aDai, Qingqing$$b2
001042650 7001_ $$0P:(DE-HGF)0$$aAlkan, Ecem Aydan$$b3
001042650 7001_ $$0P:(DE-HGF)0$$aBarabash, Anastasia$$b4
001042650 7001_ $$0P:(DE-Juel1)194716$$aZhang, Jiyun$$b5
001042650 7001_ $$0P:(DE-Juel1)201377$$aLiu, Chao$$b6
001042650 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b7
001042650 7001_ $$0P:(DE-HGF)0$$aHan, Gao-Feng$$b8
001042650 7001_ $$0P:(DE-HGF)0$$aJiang, Qing$$b9
001042650 7001_ $$0P:(DE-HGF)0$$aWang, Tonghui$$b10
001042650 7001_ $$0P:(DE-HGF)0$$aSeok, Sang Il$$b11
001042650 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b12
001042650 773__ $$0PERI:(DE-600)1479266-7$$a10.1002/ange.202424515$$gp. e202424515$$n22$$pe202424515$$tAngewandte Chemie$$v137$$x0932-2132$$y2025
001042650 8564_ $$uhttps://juser.fz-juelich.de/record/1042650/files/Angewandte%20Chemie%20-%202025%20-%20Wu%20-%20Highly%20Stable%20Sn%20Pb%20Perovskite%20Solar%20Cells%20Enabled%20by%20Phenol%E2%80%90Functionalized%20Hole.pdf$$yOpenAccess
001042650 909CO $$ooai:juser.fz-juelich.de:1042650$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001042650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192542$$aForschungszentrum Jülich$$b0$$kFZJ
001042650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207942$$aForschungszentrum Jülich$$b1$$kFZJ
001042650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001042650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194716$$aForschungszentrum Jülich$$b5$$kFZJ
001042650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201377$$aForschungszentrum Jülich$$b6$$kFZJ
001042650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b7$$kFZJ
001042650 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b12$$kFZJ
001042650 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001042650 9141_ $$y2025
001042650 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001042650 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001042650 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
001042650 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-17$$wger
001042650 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001042650 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-17
001042650 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001042650 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001042650 920__ $$lyes
001042650 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001042650 980__ $$ajournal
001042650 980__ $$aVDB
001042650 980__ $$aUNRESTRICTED
001042650 980__ $$aI:(DE-Juel1)IET-2-20140314
001042650 9801_ $$aFullTexts