001042669 001__ 1042669
001042669 005__ 20250804115200.0
001042669 0247_ $$2doi$$a10.1021/jacs.4c14824
001042669 0247_ $$2ISSN$$a0002-7863
001042669 0247_ $$2ISSN$$a1520-5126
001042669 0247_ $$2ISSN$$a1943-2984
001042669 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02638
001042669 0247_ $$2pmid$$a39752396
001042669 0247_ $$2WOS$$aWOS:001389970400001
001042669 037__ $$aFZJ-2025-02638
001042669 082__ $$a540
001042669 1001_ $$00000-0001-9992-5449$$aBornschlegl, Andreas J.$$b0$$eCorresponding author
001042669 245__ $$aAn Automated Workflow to Discover the Structure–Stability Relations for Radiation Hard Molecular Semiconductors
001042669 260__ $$aWashington, DC$$bACS Publications$$c2025
001042669 3367_ $$2DRIVER$$aarticle
001042669 3367_ $$2DataCite$$aOutput Types/Journal article
001042669 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754033171_23131
001042669 3367_ $$2BibTeX$$aARTICLE
001042669 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001042669 3367_ $$00$$2EndNote$$aJournal Article
001042669 520__ $$aEmerging photovoltaics for outer space applications are one of the many examples where radiation hard molecular semiconductors are essential. However, due to a lack of general design principles, their resilience against extra-terrestrial high-energy radiation can currently not be predicted. In this work, the discovery of radiation hard materials is accelerated by combining the strengths of high-throughput, lab automation and machine learning. This way, a large material library of more than 130 organic hole transport materials is automatically processed, degraded, and measured. The materials are degraded under ultraviolet-C (UVC) light in a nitrogen atmosphere, serving as the conditions for electromagnetic radiation hardness tests. A value closely related to the differential quantum yield for photodegradation is extracted from the evolution of the UV–visible (UV–vis) spectra over time and used as a stability target. Following this procedure, a stability ranking spanning over 3 orders of magnitude was obtained. Combining Gaussian Process Regression based on predictors from structural fingerprints and manual filtering of the materials by features, structure–stability relations for UVC stable materials could be found: Fused aromatic ring clusters are beneficial, whereas thiophene, methoxy and vinylene groups are detrimental. Comparing the UV–vis spectra of the degraded material in film and solution, bond cleavage could be made out as the leading degradation mechanism. Even though UVC light can in principle break most organic bonds, the stable materials are able to distribute and dissipate the energy well enough so that the chemical structures remain stable. The established predictive model quantifies the effect of specific molecular features on UVC stability, allowing chemists to consider UVC stability in their molecular design strategy. In the future, a larger data set will allow to inversely design molecular semiconductors which show high performance and radiation hardness at the same time.
001042669 536__ $$0G:(DE-HGF)POF4-1214$$a1214 - Modules, stability, performance and specific applications (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001042669 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001042669 7001_ $$0P:(DE-HGF)0$$aDuchstein, Patrick$$b1
001042669 7001_ $$0P:(DE-Juel1)192542$$aWu, Jianchang$$b2
001042669 7001_ $$0P:(DE-Juel1)201567$$aRocha-Ortiz, Juan S.$$b3
001042669 7001_ $$00000-0002-0014-0041$$aCaicedo-Reina, Mauricio$$b4
001042669 7001_ $$0P:(DE-HGF)0$$aOrtiz, Alejandro$$b5
001042669 7001_ $$0P:(DE-HGF)0$$aInsuasty, Braulio$$b6
001042669 7001_ $$0P:(DE-HGF)0$$aZahn, Dirk$$b7
001042669 7001_ $$0P:(DE-Juel1)206674$$aLüer, Larry$$b8
001042669 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b9$$eCorresponding author
001042669 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.4c14824$$gVol. 147, no. 2, p. 1957 - 1967$$n2$$p1957 - 1967$$tJournal of the American Chemical Society$$v147$$x0002-7863$$y2025
001042669 8564_ $$uhttps://juser.fz-juelich.de/record/1042669/files/An%20Automated%20Workflow%20to%20Discover%20the%20Structure-Stability%20Relations%20for%20Radiation%20Hard%20Molecular%20Semiconductors.docx$$yPublished on 2025-01-03. Available in OpenAccess from 2026-01-03.
001042669 909CO $$ooai:juser.fz-juelich.de:1042669$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001042669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192542$$aForschungszentrum Jülich$$b2$$kFZJ
001042669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201567$$aForschungszentrum Jülich$$b3$$kFZJ
001042669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206674$$aForschungszentrum Jülich$$b8$$kFZJ
001042669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b9$$kFZJ
001042669 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001042669 9141_ $$y2025
001042669 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2022$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001042669 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001042669 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
001042669 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001042669 920__ $$lyes
001042669 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001042669 980__ $$ajournal
001042669 980__ $$aVDB
001042669 980__ $$aUNRESTRICTED
001042669 980__ $$aI:(DE-Juel1)IET-2-20140314
001042669 9801_ $$aFullTexts